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Abstract

1,3-bis{2-(4-methylpyridyl)imino}isoindoline (4-MeInH) reacts with copper(II) acetate and 2,4,6-trimercaptotriazine (H3TMTA) to
yield [Cu(4-MeIn)]3(TMTA), a trinuclear propeller complex composed of three Cu(4-MeIn) ‘‘blades’’ coordinated to a 2,4,6-trimercapto-
triazine (TMTA) ‘‘hub’’. Each copper(II) center is coordinated via a exocyclic sulfur and a ring nitrogen from TMTA. Although the tri-
mer is infinitely stable in the solid state, dark green solutions fade over time to produce a mixture of dinuclear products which are a result
of both hydrolysis and desulfurization reactions. Variable temperature magnetic susceptibility measurements on [Cu(4-MeIn)]3(TMTA)
are consistent with a spin-frustrated doublet ground state and show the presence of moderate antiferromagnetic coupling
(�2J = 38.14 cm�1) between the copper(II) centers.
� 2007 Elsevier B.V. All rights reserved.
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2,4,6-Trimercaptotriazine (H3TMTA) also known as
thiocyanuric acid is widely utilized in waste water heavy
metal remediation [1]. Although thiocyanuric acid has been
known since the mid-1880s [2,3] and its structural chemis-
try has been extensively studied, there are few descriptions
of its coordination chemistry. The majority of the coordi-
nation chemistry involves utilizing H3TMTA as a building
block in supramolecular arrays and hydrogen-bonded net-
works [4,5]. The paucity of trimers [6–9,14] among struc-
turally characterized molecular complexes of H3TMTA
[10–12,29,16,33], has been attributed to the decreased solu-
bility of partial metallated forms [10,13] and steric interac-
tions between bulky co-ligands. Thiocyanuric acid is of
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additional interest, due to its ability to coordinate in both
the thiol and thione forms (Fig. 1) [14,15]. Soft metal ions
such as Cu(I) [16], Au(I) [17] are normally found as S-
bound complexes, whereas hard metal ions such as
lithium(I) [18] are found associated with the hetrocyclic
nitrogen atom. We hypothesized that the borderline acidic
nature of copper(II) could potentially allow for coordina-
tion by both the nitrogen and sulfur atoms [19].

To overcome the tendency for H3TMTA to stabilize
copper(I), we decided to use 1,3-bis{2-(4-methylpyr-
idyl)imino}isoindoline (4-MeInH) [20] as a co-ligand. 1,3-
bis(2-arylimino)isoindoles (AInHs), which have recently
received increased attention [21–25], are restricted to coor-
dinate in a meridional fashion about the metal center, thus
imparting trigonal symmetry on pentacoordinate metal
ions. Indeed, when [Cu(4-MeIn)(OAc)] (generated in situ)
is allowed to react with 2,4,6-trimercaptotriazine
(H3TMTA) [26] a equilateral triangular complex,
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Fig. 1. The tautomeric forms of 2,4,6-trimercaptotriazine (H3TMTA).

Fig. 2. 1,3-bis{2-(4-methylpyridyl)imino}isoindoline (4-MeInH).
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{[Cu(4-MeIn)] 3(TMTA)} equilateral Cu(II) triangular
complex, {[Cu(4-MeIn)]3(TMTA)} precipitates from the
reaction mixture [27,28].

X-ray diffraction of a crystal of the chloroform solvate,
[Cu(4-MeIn)]3(TMTA) Æ 2.5CHCl3 [29,30] revealed a pro-
peller-like structure composed of three Cu(4-MeIn)
‘‘blades’’ coordinated via a pair of nitrogen and sulfur
donors from a 2,4,6-trimercaptotriazine (TMTA) ‘‘hub’’.
The three copper centers are coordinated in an almost per-
fect square pyramidal [31] (s = 0.02 Cu(1), 0.01 Cu(2) and
0.09 Cu(3)) fashion to the 4-MeIn- ligand and the 2,4,6-tri-
mercaptotriazine bridge. The basal plane of the square pyr-
amid contains the N3 coordination of a 4-MeIn- ligand and
a N-donor from the 2,4,6-trimercaptotriazine moiety,
whereas a Cu–S (avg. length 2.787 Å) bonds in the apical
direction. The carbon–sulfur bond lengths (in the TMTA
unit) are best described as varying in bond order between
double (1.656 Å), one-and-half (1.668 Å) and single
(1.687 Å) (A typical C–S single bond is 1.681 Å) [32] com-
pared to the C@S (1.641–1.659 Å) bonds [16] in free
H3TMTA. The average C–S length (1.670 Å) is the same
as in a monomeric nickel(II) complex with the same N,S-
bis-coordination mode [33] which interestingly also shows
the same variable C–S bond orders. The bond lengths
between the copper(II) and 4-MeIn� are similar to those
found in the pyridyl-isoindoline copper zwitterionic com-
plex reported by Balogh-Hergovich and co-workers
(Cu(I)(indH)(O-bs), indH2 = 1,3-bis(2-pyridylimino)isoind-
oline and O-bs = O-benzoylsalicylate) [34]. It was origi-
nally assumed that the copper was in the +1 oxidation
state, but Wicholas and co-workers speculated that this
Fig. 3. ORTEP Views (30% ellipsoids) of [Cu(4-MeIn)]3(T
complex actually contained a copper(II) center. As the
Cu–O(apical) distance (2.557 Å) is well within the accepted
distances for Jahn–Teller elongated bonds of this type [35].

The similarities between the Cu-4-MeIn� bond lengths in
{[Cu(4 0-MeIn)]3(TMTA)}, Cu–N(isoindoline) (1.905 Å),
and the Cu–N(pyridyl)avg (2.007 Å) with those found in
Cu(indH)(O-bs), [Cu–N(isoindoline) (1.881 Å), and the
Cu–N(pyridyl)avg (2.008 Å)] further supports the +2 oxida-
tion state assignment (see Figs. 2 and 3).

[Cu(4-MeIn)]3(TMTA) is infinitely stable in the solid
state, however, when a dark green solution of the complex
is allowed to stand for extended periods of time, the solu-
tion color fades to a pale yellow to produce a mixture of
dinuclear products which are a result of both hydrolysis
and desulfurization reactions. Slow vapor diffusion of
toluene into a faded chloroform solution of [Cu(4-
MeIn)]3(TMTA) resulted in a few single crystals. X-ray
diffraction revealed that the crystals [29,36] were a mixture
MTA) Æ 2.5 CHCl3 (solvent and hydrogen not shown).
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of 63.1% hydrolysis, {Cu(4-MeIn)]2(C3HN3S3)} and 36.9%
desulfurized {Cu(4-MeIn)]2 (C3HN3S2)} products (Figs. 4
and 5). A similar reaction has been observed in a cobal-
t(III) complex of TMTA [37]. Repeated elemental analyses
revealed deficiencies in sulfur and copper, however, these
results varied widely as the degree of decomposition was
variable between samples. The geometry about each copper
center can again be described as nearly square pyramidal
(s = 0.01 for Cu(1) and 0.12 for Cu(2)) [31]. Each basal
plane is occupied by a 4-MeIn� ligand and a triazine nitro-
gen donor , possessing similar bond lengths to those found
in [Cu(4-MeIn)]3(TMTA) . Each apical site is occupied by a
l2-exocyclic sulfur donor of thiolate character (C–S length
of 1.681 Å) which bridges the two copper centers. Cu(1)
and Cu(2) are lifted out of the ligand plane by 0.401 and
0.495 Å, respectively. The remaining, uncoordinated
TMTA nitrogen is protonated (the hydrogen was found
in density map).
Fig. 4. ORTEP Diagrams (30% ellipsoids) of 0.631{Cu(4�MeIn)]2-
(C3HN3S3)} Æ 0.369{Cu(4� MeIn)]2(C3HN3S2)} Æ 2(CH3C6H5) Æ 0.282(H2O);
only ({Cu(4�MeIn)]2(C3HN3S3)} is shown (S2 or S3 are replaced by
hydrogen in {Cu(4�MeIn)]2(C3HN3S2)}).

Fig. 5. Diagram of the products of (a) the hydrolysis and (b) the
desulfurization reactions.
Spectroscopic Studies [38] (FT-IR and UV–visible)
reveal characteristic changes in the IR spectrum indicative
of presence of a deprotonated isoindoline ligand and thioc-
yanurate stretches [39], respectively, (absence of a strong
band at 1100 cm�1) absorptions in the range 1600-
1660 cm�1). Whereas the UV–visible spectrum of {[Cu(4-
MeIn)]3(TMTA)} shows two intense peaks at 421 nm
(17154 M�1 cm�1) and 441 nm (13411 M�1 cm�1, sh),
which we assign as Cu S(r) and Cu S(p) LMCT tran-
sitions, respectively, [40,41]. The d–d transitions occur at
663 nm (477 M�1 cm�1), and at 798 nm (363 M�1 cm�1,
broad shoulder) indicative of the presence of copper(II)
with pseudo-D3h symmetry [42]. Variable temperature
magnetic susceptibility measurements [43] of [Cu(4-
MeIn)]3(TMTA) show the presence of moderate antiferro-
magnetic coupling between the copper(II) centers (Fig. 6).
vmT at 300 K is cm3 mol�1 K, which is slightly lower than
the value expected for three uncoupled S 1

2
centers and

approaches 0.375 cm3 mol�1 K (the value of a single S 1
2

center) at 3 K. Such behavior is consistent with a spin-frus-
trated doublet ground state [44]. The variable temperature
magnetic behavior of {[Cu(4-MeIn)]3(TMTA)} was fit by
applying the isotropic Heisenberg–Dirac–van Vleck

(HDVV) Hamiltonian H ¼ �2 J bS 1 � bS 2 þ bS 2 � bS 3 þ bS3�
h�

bS 1�
�

to an equilaterial triangle (C3v) model of spin 1
2

centers. The energy, E(ST) of each state is determined from

EðSTÞ ¼ �J STðST þ 1Þ �
X

i

SiðSi þ 1Þ
" #

ð1Þ
where ST = and where ST is the total spin (S1 + S2 + S3)
and Si(i = 1,2,3) is the spin of each ion.

Since, ST can take values 1
2
(››fl), 1

2
(›fl›) or 3

2
(›››), the ST

1
2

state is thus doubly degenerate, with an energy �3J
2

, while
ST ¼ 3

2
state has an energy of 3J

2
. Substitution of these E(ST)

values into the Van Vleck equation [45], and including the
terms for paramagnetic impurity (q) yields the expression
for the molar magnetic susceptibility given in Eq. (2).

vm ¼ ð1� qÞ Ng2b2

3kT
3þ 15e3J=kT

4þ 4e3J=kT

� �
þ q

Ng2b2

4kT
ð2Þ

where N is the Avogadro number, g the Landé g-factor, b
the Bohr magneton, k the Boltzmann constant and T the
Kelvin temperature.

The experimental vmT data of [Cu(4-MeIn)]3(TMTA)
was fit using Eq. (2). A Least-squares fit (R2 = 2.23 · 10�4)
produced g = 2.00, J = �19.07, q = 3.50%. The negative
sign of J indicates the presence of antiferromagnetic interac-
tions between the copper(II) centers and therefore, the com-
plex has a doubly degenerate ST

1
2

is the ground spin state,
with the ST

3
2

state 57.21 cm�1 higher in energy (Fig. 5b).
There are no indications of antisymmetric exchange

interactions [46,47], as are sometimes seen in triangular
complexes with nearly degenerate S 1

2
states. Such behavior

manifests generally as a decrease below the vmT value of



Fig. 6. (a) vmT vs. Temperature plot of [Cu(4-MeIn)]3(TMTA) Æ 2.5CHCl3, the solid line is the best fit to the data as described in the text (b) the
corresponding spin ladder.
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0.375 cm3 mol�1 K (one unpaired electron) at low
temperature.
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CCDC 627205 and 627206 contain the supplementary
crystallographic data for this paper. These data can be
obtained free of charge via http://www.ccdc.cam.ac.uk/
conts/retrieving.html, or from the Cambridge Crystallo-
graphic Data Centre, 12 Union Road, Cambridge CB2
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[2] P. Claësson (Klason), Öfver di- och trithiocyanursyra, Bihang Till K.

Svenska Vet.-Akad. Handlingar, 9(17) (1884) 21.
[3] A.W. Hofmann, Ueber die Sulfocyanursäure, Berichte der Deuts-
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