Gillenwater steps/notes for chapter 6 (media queries)
As before, be careful with cutting and pasting code from this file; I tried to use shift-return to prevent problems with hard returns, but you should know that it's an issue. Part 2 small screen initially worked in Chrome but not Firefox because I had an error in a –moz-linear-gradient rule, which Chrome ignored. The View Source in IE8+ is better than Firefox because it color codes the CSS as well.
Look around this layout for other ideas.
Media queries. See the W3C on this. Also Quirksmode 1 and 2 (add viewport meta tag). Most common are

· min-width: and max-width:

· min-device-width: and max-device-width:

· orientation:

· color

· resolution

These can be either attributes of a <link rel="stylesheet" media="only screen and (color) and (max-width:600px)" href="color_phone.css" /> ("only" prevents old browsers from trying to use the styles. Note it's not needed inside a stylesheet).
or in a stylesheet:

<style type="text/css">

@media screen and (color) and (max-width: 600px) {

body {

font-size: 75%;

}

#nav {

display: none;

}

#main {

float: none;

width: 95%;

}
}
</style>
Note the extra set of braces { } because this is sort of like another stylesheet inside this one @media rule.

or in an @import url(color_phone.css) only screen and (color) and (max-width: 600px);
which also goes in an embedded or linked stylesheet.
Build these sequentially at the end of the style sheet so that each one overrides the previous rules via the cascade.
1a Make 3-column with nav on left for >1200px width

@media screen and (min-width: 1200px) {

#nav-main {

position: fixed; /*was floated right */

top: 130px;

width: 13%;

margin: 0;

}

#content-main, #about {

width: 58%; /* was 70% */

margin-left: 18%; /* new to make room for nav*/

}

#content-secondary, #credits {width: 20%;} /* was 25% */
}
Note #about is below main and #credits is below secondary and a comma , = "and"
1b Make the buttons stack (don't float them) and take off rounded corners, i.e. border-radius:
#nav-main li {

float: none;

margin: 0;

}

#nav-main a {

-moz-border-radius: 0;

-webkit-border-radius: 0;

border-radius: 0;

}

1c Style the nav div like the newsletter email div on the right:
Add

nav-main {-moz-box-shadow: 0 0 8px rgba(0,0,0,.1);

-webkit-box-shadow: 0 0 8px rgba(0,0,0,.1);

box-shadow: 0 0 8px rgba(0,0,0,.1);

-moz-border-radius: 3px;

-webkit-border-radius: 3px;

border-radius: 3px;

background: rgba(255,255,255,.3);

text-align: right;
}

That also means making the links a little more transparent since you have added a background color to the nav menu as a whole, although this is a really subtle difference

#nav-main a{

background: -moz-linear-gradient(rgba (255,255,255, .3), rgba (255,255,255, 0) 15px);

background: -webkit-gradient(linear, 0 0, 0 15, from(rgba (255,255,255,.3)), to(rgba(255,255,255,0))); /*these were alpha = .5 to alpha = 0*/

}

Again, linear gradients are now standardized. This should work and cover the whole space (not tested):
background-image: linear-gradient(0deg, rgba(255, 255, 255, 0), rgba (255, 255, 255, 0.3));

Same for the hover on these links

nav-main a:hover {

background: -moz-linear-gradient(rgba(255,255,255,.6), rgba(255,255,255,.2) 15px);

background: -webkit-gradient(linear, 0 0, 0 15, from(rgba(255,255,255,.6)), to(rgba(255,255,255,.2)));
/* these were alpha = .8 to alpha = .2*/

}
New syntax:

background-image: linear-gradient(0deg, rgba(255, 255, 255, 0.2), rgba (255, 255, 255, 0.6));

The color values are the same as (hsla(0,0%,100%,.6), hsla(0,0%,100%,.2) (white)
1d Multi-column text. Make it 2 columns in the intro paragraph for wide and regular screens. Note this is NOT in the media query. We're going to change that in the media query for small screens.
Add column-count to the h1+p selector (p that is an adjacent sibling of an h1). You can also set column-width: but that can conflict with column-count: it's probably better just to set the count and add a column-gap as well. She adds the Opera rule here again for future compatibility. This one still requires vendor prefixes.
h1 + p {

-moz-column-count: 2;

-o-column-count: 2;

-webkit-column-count: 2;

column-count: 2;
}
Then add
column–gap: 1.5em;
as needed. (Small test: how many do you need, where?)
She notes that this is just to control how the browsers set them—not much will happen here.
There are lots of gotchas with this (see p. 217), but as long as you have enough content to fill them both and you don't have a lot of box model elements (margin, padding, border) or floats, you should be OK.

2 Small-screen layout

Cut off is 760px wide—that's to avoid 800 X 600 and iPads, which are 768 X 1024 (note this is 3X4 aspect ratio where denominator is 256, reverse of the old 4X3 desktop monitor shape).

2a Let the nav bar left align below the logo. Note the clear: left; rule says go down below (clear) any left floats, and you'll see the logo is floated left. Then a margin-right is added to each button (li).
To see this, you have narrow to the width right below 760. But mine doesn't jump left and the Newsletter box has bigger type … . ???
@media screen and (max-width: 760px) {

#nav-main {

clear: left;

float: left;

}

#nav-main li {margin: 0 .5em 0 0;}
}

2b One column: Put this inside the media query to override 2-column rule
h1 + p {

-moz-column-count: 1;

-o-column-count: 1;

-webkit-column-count: 1;

column-count: 1;

}

2c Fix the three-column product boxes to stack (don't float) and then move the images to the left (background-position:) and narrow the h3 in the Newsletter box.
Add:

.feature {

float: none;

width: auto;

margin: 0 0 1.6em 0; /*bottom margin */

padding: 0 0 0 140px; /* padding-left to leave room for the images */

background-position: top left;

}
h3 {

font-size: 100%; /* was 112.5%--note how she set h1=300% h2=150% h3=112.5% */

letter-spacing: 0; /* was letter-spacing: 1px which adds 1 pixel */

}
Note as on p. 223 Icon Eden has some free sets including these food ones, construction and glassy buttons.
3 Phones
Recall that ideally we would want to not load high-res images, scripts etc. on a mobile version (Quirksmode from Zeldman chapter 12).
Also Zeldman and Peter-Paul Koch, the Quirksmode guy, use max-device-width and min-device-width. Device width doesn't change—most mobile phones are 320 X 480 (you can't resize the window) so device-width would make sense here. So something like:
@media screen and (min-device-width: 320px) and (max-device-width: 480px)
would work in iPhone and Android in both landscape and portrait (don't add this). You can also specify styles for each (orientation: portrait) and (orientation: landscape)

But –width works too, so she sticks to that.

Again, add new query beneath the last one. Note that then style in the <760 one will also apply to mobile, so they don't have to be repeated.
3a No floats at all, width=100%
@media screen and (max-width: 550px) {

#content-main, #content-secondary, #about, #credits{

float: none;

width: 100%;
}

#credits {margin-top: 1.6em;}
}

3b Adjust fonts for smaller screen:
h1 {font-size: 225%;}

h1 + p {font-size: 100%;}

(Be sure to keep all these rules in the @media query {}

3c smaller images. She loaded 128px and 64px sizes from Icon Eden (or you could resize in background-size: but this would make them fuzzy). Then reduce padding-left by one-half

.feature {padding-left: 70px;} /* was 140 */

#feature-candy { background-image: url(images/icon_candy_64-trans.png); }

#feature-pastry { background-image: url(images/icon_pastry_64-trans.png); }

#feature-dessert { background-image: url(images/icon_dessert_64-trans.png); }

3d Tighten up the newsletter block.

#form-newsletter * {display: inline; }

#form-newsletter input[type=text] {width: auto;} /*was 95% */

display: inline allows text input and submit to live on the same line. Note also use of universal selector (*) and attribute selector []

3e Make credits go on one line:,
#credits dt {

clear: left;

float: left;

margin: -.05em .2em 0 0; /* to remove .05em margin-bottom on the dd (credit line) */

}
3f Make the search box smaller with <label> above it (display: block;). Right now this is the only thing not working in her version, or at least it's hard to see (p. 233).
#form-search input[type=text] {width: 100px;}

4 Fourth media query for this:

@media screen and (max-width: 400px) {

#form-search label {display: block;}
}

5 For iPhone put back higher-res 128px images for retina (double pixel) display, but squeeze them into 64 pixel width
@media screen and (-webkit-min-device-pixel-ratio: 2) and (max-width: 480px) { /* recall iPhone is Mobile Safari therefore Webkit */
.feature {

-webkit-background-size: 64px 64px;

background-size: 64px 64px;

}

#feature-candy { background-image: url(images/icon_candy_128-trans.png); }

#feature-pastry { background-image: url(images/icon_pastry_128-trans.png); }

#feature-dessert { background-image: url(images/icon_dessert_128-trans.png); }

6 Add a viewport meta tag. This is key—media queries are ignored w/o it by mobile devices. That's because phones use a "virtual viewport" or "layout viewport" (Peter-Paul Koch) that's larger than what it actually shows (in the visual viewport—the actual screen width) to at least let the full Web pages load up and show larger content in the visual viewport See Quirksmode again, and also this link on that page for visuals.
[image: image1.jpg]

Blue box is the layout viewport.
This layout viewport, which is what the CSS recognizes, varies:

· iPhone 980px

· Android 800px

· Opera 850px

And you would be looking at it with a much smaller device width of probably 320px in portrait or 480px in landscape. If you are fully zoomed out, they will match, but zooming in changes the device pixels, but not the CSS pixels.
SO

<meta name="viewport" content="width=device-width, maximum-scale=1.0" >

<!--this sets the layout viewport equal to the size of the screen. P-P Koch notes that you can do this with device-width in CSS but it's not quite the same -->
Also maximum scale prevents iPhones from zooming in on 320 pixels to fill 480 (when it’s in landscape).

Use Chris Pederick's Web Developer add-on, which has a Resize menu and set it to ones you use, e.g. in this project. Or use the Dreamweaver Multiscreen view.
IE8 script sort of works …

Chapter 7 is on the flexible box layout model and box-sizing:

These are look-ahead properties that probably won’t get used for a few years. It covers:
· vertical or horizontal orientation

· alignment of boxes

· how space is filled

Note file here has no floats or positioning, so everything stacks vertically down the page. Then (adding a container she calls "content" to the bakery page) set display: box:
#content {

display: -moz-box;

display: -o-box;

display: -webkit-box;

display: -ms-box; /*IE isn’t sure but you might need this */

display: box;
}

Note that you need the wrapper to make boxed inside act like columns, sort of like position: absolute but not like float:

Then set orientation for the child elements (actually default box-orient: inline-axis IS horizontal, but this is to show how the property works) (add these rules)
#content {
-moz-box-orient: horizontal;
-o-box-orient: horizontal;
-webkit-box-orient: horizontal;
box-orient: horizontal;
}

Width will adjust to content (intrinsic width, similar to the “shrink-wrap” effect with floats). box-flex will make boxes fit width, adding or subtracting to fit in proportion to value of box-flex. Basic would be
#content-main {

-moz-box-flex: 1;

-o-box-flex: 1;

-webkit-box-flex: 1;

box-flex: 1;
}
[But note new syntax from CSS-Tricks where the flex=1 is assigned to boxes inside the container:

.grid {

 /* As of August 2012, only supported in Chrome 21+ */

display: -webkit-flex;

 display: flex;

}

.fluid {

flex: 1;

}
(Note there's also display: inline-flex; analogous to display: inline: block;)
For Gillenwater, do same for #content-secondary {}

But Chrome makes sidebar wider than Firefox, and there’s really no “correct” answer at this point! So she just assigns a width: 16em for the sidebar with margins, doesn’t let it flex, and lets the main content fill the rest using box-flex: (some of you did something similar in the 3-column exercise).
#content-secondary {

width: 16em;

margin: 0 0 40px 40px;
}

Adding a third column (she does that with the #footer) is simply done by adding a new <div> and setting a width as with the sidebar above; as long as one box has box-flex: it will continue to adjust. Also this applies whether wrapper is pixel width (not obvious) or % (what you might expect).

You can reverse the order with box-direction: reverse; (add that to #content for each browser type). Sidebar will now be on the left. Note the margins would need to be adjusted:
#content-secondary {width: 16em; margin: 0 40px 40px 0;}
Or you can specify the order of the boxes with
box-ordinal-group: 1 (to be first, then 2 next, etc.)
To get the child boxes to have equal heights, set the parent to box-align: stretch (stretch is also the default)
#content {

-moz-box-align: stretch;

-o-box-align: stretch;

-webkit-box-align: stretch;

box-align: stretch;

}

box-align: can also have values such as :start :end :center which do what you would think (adjusting for vertical or horizontal parent)
Watch Mozilla browsers with some of this, e.g. you might have to specify
width: 100%;
for the parent box. Also be careful combining flexible boxes with floats (don’t).
Being able to vertically center used to be really tough. Now it’s just box-align: center.

#parent {

width:100%;

-moz-box-align: center;

-o-box-align: center;

-webkit-box-align: center;

box-align: center;

display: box; /*fill out all 4 rules for these */

box-orient: horizontal;
}
Here you are vertically centering boxes that are oriented horizontally. To horizontally center boxes that are aligned horizontally, you need
box-pack: center;
and again possible values are :start and :end

Use this e.g. to make an input box on a form stretch to fill available width. Make the parent div display: box; then set a box-flex: 1 on the <input>:
#form input[type='text'] {box-flex: 1;}
You can cover non-supporting browsers …

Sticky footer that always stays at the bottom of the screen

1. Add width:100% to body{} and html{}

2. Add a #wrapper div with
min-height:100%;
display: box;
 box-orient: vertical;

3. If there are 3 divs that stack vertically named #header #content and #footer, you want the #content box, the one above the #footer, to flex to fill the whole screen (<html> element) so add #content {box-flex:1;}

Other properties, notably
box-sizing:
Default for this is to make width be the width of the content only
(recall the box model):

[image: image2]
box-sizing: content-box

but you can now use

box-sizing: border-box; which is probably most useful since the margin isn't normally visible, i.e. you can't add a border around the margin; OR
box-sizing: padding-box;
border-box means that when you add padding or a border, the whole box stays the same width, useful e.g. for floated <div>s where e.g. width: 33%
Also to come (perhaps—still in limbo):

Template layout, something like (she leaves out the first semi-colon)

body {

display: "aaa";

"bcc";

"ddd";
}

Then put divs in the positions above (think of it as a grid or tic-tac-toe)

#header {position: a;}
#nav {position: b;}
#content {position: c;}
#footer {position: d;}

Grid positioning using grid-columns: 3 and grid-rows: 4

Hasn't been worked on since 2007.

That's it! And there's more in the book e.g. background-clip: border-box
Content

Padding

Margin

Border

