Location Studio - Interface Control Document

Advanced Application Interface Specification

System Version: Location Studio 2.0

Openwave Systems Inc.

Abstract

This document describes Openwave’s Advanced Application Interface. This interface allows for
the application to use Location Studio to perform location requests, messaging, record billing
events, and verify the subscriber.

Document ID: Final Document Version: 1.7
Document Status: Date: 13 January 2003

Openwave Systems
1400 Seaport Boulevard
Redwood City, CA 94063

USA

OPENWAVE PROPRIETARY AND CONFIDENTIAL

REVISION HISTORY

Interface Control Document

Version Level Date of Remarks Revised By:
Issue
0.1 06/27/02 First Draft Richard Wong
0.2 07/17/02 Minor fixes, updated wap push class Richard Wong
0.3 07/29/02 Openwave formatting Richard Wong
0.4 08/08/02 Updated WSDL, minor fixes Richard Wong
0.5 08/19/02 Updated optional parameters, added Richard Wong
detail of format of return items
0.6 09/02/02 Many changes and additions. WSDL Mats Cedervall
examples removed. Java examples
included.
0.7 09/04/02 Update after review meeting Mats Cedervall
0.71 09/12/02 Some changes in 0.7 were missed Mats Cedervall
because of a WORD crash. These
changes are redone in 0.71
1.3 10/24/02 Added error code information Rose Reynolds
1.4 11/15/02 Added getLocation default values Rose Reynolds
1.5 11/26/02 Added SMS and WAP Proxy info Rose Reynolds
1.6 01/10/03 10.1 added information that the Per Hubinette
mapping of error codes are only done
when a simple location request is
made.
1.7 01/13/03 Added missing parameter ‘alt’ in Mattias Arbin
getLocation response
16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 2

Interface Control Document

TABLE OF CONTENTS

REVISION HISTORY ..o e e e e e e e e e e e e e e e eeennnennnnnes 2
1 INTRODUCTION L. e e e e et e e e e e e e aa e e e e e eenenaaas 5
1.1 Purpose of the DOCUMENT........c.ooiiiiiie et ettt sb e e 5
A] (0S-SR 5
2 REFERENCES ..ottt 7
3 SYSTEM OVERVIEW.... ...t 8
3.1 OVErall ATCRITECIUNE ...t b e b e et b et e e 8
4 SUBSCRIBER VERIFICATION AND VALIDATION....ccooiiiiiiieeeeeeeee e, 9
4.1 Typical Subscriber Verification and Validation Request/Response SeqUeNCesc.coceeee. 9
4.1.1 SubSCrDEr VErifiCatiON.........cooiiiiiiiiie et e 9
4,111 TYPICAI Call FIOWocveiiiieee ettt ne e 9
4.1.2 Subscriber Validationcccoeciiiiriiirece e 10
4.1.21 TYPICAl Call TIOW...ccviiieiciicice e e e nne s 10
O N (=Y o - (o=l L= Tod] o [o PSSP 11
421 AUNENTICALE CHENT ..ottt sttt e e be b 11
4.2.2 Validate SUDSCIIPLION ...eveieiicecisic et st r et sae e nesrenae e 12
4.2.3 Initiate Verify SUDSCIIDET ..o e 12
4.2.4 Complete VErify SUDSCIIDENcoiiiiiiciee e 13
5 MESSAGING ... 14
5.1 Typical Messaging Request/ReSPONSE SEQUENCESccrueruirieirierieriereeesiesieseeseeessesieseesessessesees 14
5.1.1 Downstream SMS or WAP EXamMPIecooiiiiiiiiee e 14
5.1.2 Upstream SMS ProxXy EXaMPIe.......cccoiiiiiiiiiieiecees e 15
5.1.3 Upstream WAP Proxy EXampPIe........c.ccooiioiiiiiiiic s 15
514 WAP ASK EXBMPIE....ciiiiiiiic bbb e 16
LT L) (=] - Tl B =T od] o [o PR 17
5.2.1 SENUSMSIMESSAJE ... veiveerveiieteete st see et et e steste s e et esteestesaestease e besbeeseesesteeseesbesreeneensesranreens 17
5,22 SENUWAEAPMESSAQEveveeeeeiieiiiesiesteeteete e seetestesteeee e tees e sbesteeseestesteessesesaeaneeseeseeeneensensens 18
5.2.3 WAP ProXY FOIMALccoiiiiiiiiiiiiiie et sae bbb niee s 19
5.2.4 SIMS PrOXY FOIMALciiiiiiiieiiitiiteeeeee ettt nn et anenne e 20
6 EVENT BILLING ..o e e e e e e e e e e e 21
6.1 Typical Event Billing Request/ReSPONSE SEQUENCEc.eviuiririiiiriiieriiieesieesieieseeie e 21

16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 3

Interface Control Document

6.2 INTErface DESCIIPTION. ... ittt ettt ettt se et b e b e b e e et ebe b e 21
B.2.1 SENAEVENT......ocuiiitiiiieett ettt bbb bbbt 22
7 LOCATION REQUESTS ...ttt 23
5T T 1 TR 23
7.2 Simple LOCAtion REGUESTciiiiiitiirete ettt bbb 23
7.3 Typical Location Request/RESPONSE SEQUENCE.........ccuriririeieerieriesteieiesie st seeseesesie e seeseeneesesees 23
7.4 INtErface DESCIIPTION. .. c.cii i i iieeet ettt sa et e reete st st e e eneabesteseeseenesreneeneas 24
TAL LIF DASEA FEQUESL.......cuiietiiiteiirieteriet ettt bbbttt ettt 24
TALL GELLOCALION ...ttt bbbttt 24
7.4.2 SIMPIE LOCALION FEOUESEcuieiieeieeieeiiete ettt ettt ee e 26
TA.2. 1 QELLOCAIION ..ottt bbb bbb b et ne e 26
8 APPLICATION NOTES ...ttt 28
LT 2= T I G 1 R Y/ o TSP 28
8.2 Valid MEAIA TYPES ...ttt sttt et b bbb bbbt b e et et et sb e e e ne et e nbe e s 28
R I A N e o] o) |V PSSP P PP PP 28
B4 WWAP ASK ...ttt bbbkttt 29
9 EXAMPLE REQUESTS AND RESPONSES ..o 30
9.1 PSEUAO EXAMIPIE ...ttt ettt bbbttt sb e b e st et e bese et eneebe e e s 30
LS A7 W= T 1] o LSS 30
10 ERROR MESSAGES ... oot 32
10.1Location ReqQUESE EXTOr COUEScvviiiriiieicese ettt sttt se e sr s esa st e e e 33
B I AT 5 PRSPPI 36
11.1SUbSCrIBEr ValidAtIONccoviiiiiieice e 36
Y [Tt To] o o OSSOSO USOPR T 38
G T V= o1 = 1| T o SRS SSTRN 40
LLLALOCALION ...ttt et ekt b bkt b et b E bt b bkt bbbt et b et n e 41

16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 4

Interface Control Document

1 INTRODUCTION

Openwave’s Location Studio provides the capability for applications to access the
functionality of the operator’'s network without custom integration. This access is granted
through Openwave’s Advanced Application Interface (AAl). The AAl is implemented over
Web Services for the maximum flexibility and ease of implementation for developers.

The following functionality is available through the AAI:

Subscriber Validation - Location Studio provides a mechanism for LCS clients to validate
subscribers, subscriptions, and LCS client credentials. The subscriber validation also provides
clients with an alias to anonymously identify users.

Messaging - Location Studio provides SMS and WAP functionality for LCS clients. Location
Studio supports upstream and downstream messaging. Downstream messages are initiated by
the LCS client, sent to end user through Location Studio. Upstream messages are sent by end
users, proxied by Location Studio to LCS clients. Location Studio also supports a “WAP Ask”
functionality as well as privacy proxies.

Event Billing - Location Studio offers LCS clients the functionality to submit event billing records
to the operator.

Location - Location Studio offers LCS clients the functionality to request subscriber location over
the AAl interface. In Location Studio it is also possible to retrieve location via the XML-based LIF-
MLP 3.0 interface.

The WSDL files for the standard deployment of the AAI can be found at Openwave’s SDK
website or obtained directly from Openwave . The wireless operator may have slightly different
functionality available. Please contact your wireless operator for more information.

1.1 Purpose of the Document

This document is intended to assist developers understand Openwave’s Advanced Application
Interface.

1.2 Glossary of Terms

Table 1: Glossary of Terms
Term Definition
AAI Advanced Application Interface
DTD Document Type Definition
GMLC Gateway Mobile Location Center
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
LCS Location Services
LSt Location Studio

16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 5

Interface Control Document

Term Definition

MPC Mobile Positioning Center

MS Mobile Station

MSID Mobile Station Identifier

SMSC Short Message Service Center

SSL Secure Socket Layer

TLS Transport Layer Security

URL Uniform Resource Locator

XML Extensible Markup Language
16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 6

Interface Control Document

2 REFERENCES

[1] Openwave, “Implementing Web Services in LocationStudio” Version 1.1, March 2002,
[2] W3C website on WSDL, http://www.w3.0org/TR/wsdl
[3] LIF, “Mobile Location Protocol Specification Version 3.0.0”, June 3, 2002.

[4] Openwave, “LIF MLP 3.0.0 Interface Statement of Compliance.” which can be found at Error!
Reference source not found.

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 7

Interface Control Document

3 SYSTEM OVERVIEW

3.1 Overall Architecture

A sample location service architecture is shown in Figure 1.

LCS Client - a software and/or hardware entity that interacts with a LCS Server for the purpose
of obtaining location information for one or more Mobile Stations.

Location Studio — LSt is a gateway into the operator’s network to securely and easily obtain
subscriber location data. . LSt provides abstraction from the underlying location infrastructure.

GMLC/MPC — The Gateway Mobile Location Center (GSM networks) or the Mobile Positioning
Center (CDMA networks) provides location information from the operator’'s network.

SMSC — The Short Message Service Center is the gateway to sending short messages to mobile
subscribers.

WAP GW — The WAP gateway is used by Location Studio to send WAP push messages to
subscribers.

Billing System — The billing systems of the operator collects billing information and produces
billing statements to subscribers and/or clients.

=]

L 1 = $/I/

MLC/MP!

Radio tower
Internet 1 —
—
\ﬂ/ - Operator Network
— | I

SMSC

|
WAPGW

Location Studi

| 1
Billing System

Figure 1 Sample Location Service Architecture

The AAl is implemented using Web Services. Web Services is platform and programming
language independent way to expose some business functionality over the Internet using the
SOAP protocol. For more information on Web Services see Implementing Web Services in
LocationStudio [1] or the World Wide Web Consortium’s website on WSDL|[2].

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 8

Interface Control Document

4 SUBSCRIBER VERIFICATION AND VALIDATION

The verification and validation feature in Location Studio’s AAIl provides a mechanism for
subscribers to remain anonymous and for LCS clients to validate subscribers, subscriptions, and
LCS client credentials. The LCS clients can make use of this interface to:

L]

Validate that an end-user is still a customer of the operator
Validate that the end-user is authorized by the operator to access their service
Validate that the end-user has adequate credit remaining in his/her pre-paid account

Verify that an end-user registering for a service using an internet browser is in
possession of the Mobile Station he/she registers (identity verification loop using SMS pin
code)

Receive a persistent alias that may be used to identify the mobile station in subsequent
transactions (location, messaging, billing, toolkit services) with Location Studio while
maintaining privacy and anonymity.

The advantages of using these features are that:

L]

Only requests from valid subscribers with established billing relationship are serviced.

It provides support for anonymity and privacy for internet-based community and gaming
services

No network resources are consumed (e.g. location attempt) if the subscriber validation is
negative.

4.1 Typical Subscriber Verification and Validation Request/Response Sequences

4.1.1 Subscriber Verification

The subscriber verification feature of the AAI was designed to solve 2 problems:

1.

If a user signs up for a service, the client can verify that the user is in possession of the
handset that they claims to have. This is designed to prevent malicious or inadvertent
use of a service.

If the user wants to remain anonymous to the Client, a persistent anonymous ID can be
generated and assigned to the subscriber by Location Studio. The Client will not know
who the user is and must always go through LSt to interact with the subscriber.
Personalization on the client site by the subscriber can be maintained as the alias is
persistent.

4.1.1.1 Typical Call Flow

16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 9

Interface Control Document

SMS Client Location
Gateway Studio

y
\

y

o
\ 4
Y
A b
N

~ND
y

The end user registers with the application via SMS
The LCS client sends “initiateVerifySubscriber” to LSt
Location Studio sends a code to the end user via SMS

Location Studio returns a registration alias to the LCS client as the response to the
“initiateVerifySubscriber” call.

The end user enters the code to the LCS client

6. The LCS client sends “completeVerifySubscriber” with the code and the verification ID to
Location Studio

7. Location Studio returns a persistent alias that the LCS client can use in subsequent
location requests to Location Studio for that end user

D e

o

In the preceding example, the end user could have also registered with the client through the
wired internet from a computer. In that specific case, everything except for the first step, which is
done directly to the client through a web page, remains the same.

4.1.2 Subscriber Validation

The Subscriber Validation allows the Client to validate the subscriber against a number of checks
in Location Studio’s and/or the operator’s databases. This can be useful to validate subscription
to a service or if there a sufficient funds to complete a transaction.

4.1.2.1 Typical Call flow

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 10

Interface Control Document

SMS : Location Operator
Client . Database

Gateway Studio !
(optional)

1 > >
2 P>
3 >
-t 4
- 5
g « 6

1. The end user invokes a function in the LCS client

2. The LCS client sends “validateSubscription” to LSt. Location Studio can check the
internal database to verify the subscriber is authorized by the operator to use this client.
If desired, the operator may specify an external database for this lookup as illustrated in
the optional steps 3 and 4.

3. OPTIONAL. Location Studio queries the operator billing system (or some other data
depending on the context of the client) to check if the user is allowed by the operator to
use the service.

4. OPTIONAL The billing system returns that the user in not allowed to use the service.
Location Studio returns to the LCS client “Not_Subscriber”.
6. The LCS client returns an error message to the end user

o

4.2 Interface Description

The subscriber validation feature has several methods available for use. These are:

Operation Description

authenticateClient See Section 4.2.1
validateSubscription See Section 4.2.2
initiateVerifySubscriber See Section 4.2.3
completeVerifySubscriber See Section 4.2.4

4.2.1 Authenticate client

Name authenticateClient
Description This method is used by LCS clients to validate their user names and
passwords.
Mandatory clientlD String Identifying the LCS client
Parameters password String that authenticates the LCS client
16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 11

Interface Control Document

Optional
Parameters

none

Return Value

Response Code

Response Detail

Integer value that maps to a response. See section
10

String with optional additional text information about
the response

4.2.2 Validate subscription
Name validateSubscription
Description This interface is used by LCS clients to validate the subscriber against some
database. The validation that occurs will be based on the context of client
submitting the request.
Parameters clientID Identifies the LCS client
password Authenticates the LCS client
subscriber An object that consists of strinSubscriber ID and
string ID Type. For a list of valid ID types see
section 8.1.
Optional none
Parameters
Return Values Response Code Integer value that maps to a response. See section
10
Response Detail String with optional additional text information about
the response
OperatorName String. The name of the operator who has the
subscription. For single operator deployments this
will always be the same.
transferredDate Date type. The date the subscription was
transferred. This is returned if the subscription has
been transferred to another person.
4.2.3 Initiate Verify Subscriber
Name initiateVerifySubscriber
Description This is the first step in verifying a subscriber. The client uses this method to
receive a registration ID and to get LSt to send a PIN to the user. The
registration ID and the PIN must be returned to LSt when using “complete
verify subscriber”.
Mandatory clientlD String. Identifies the LCS client
Parameters password String. Authenticates the LCS client
subscriberlD Subscriber ID object that contains two Strings, Type
and ldentification, defining the subscriber. Valid
types are phone number and operator aliases. For a
description of the alias types see section 8.1.
message String.The message that is sent to the end user
together with the pin code. The maximum length of
this message is configurable by the operator. The
16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL

Page 12

Interface Control Document

default maximum is 160 characters.

Optional
Parameters

codeSignature

messageDelimiter

String. Place holder for where the pin code should
be inserted in the message. If not specified the
default value is %CODE%. This means e.g. that the
text %CODE% in message will be replaced by a
code (PIN) generated by Location studio.

String. If the message must be split in to many
messages, the delimiter specifies where they may
be split. If not specified the default value is NULL

Return Values

Response Code
Response Detail

verificationAlias

Integer value that maps to a response. See section
10

String. Optional additional text information about the
response”

String. Unique id for this verification

4.2.4 Complete Verify Subscriber

Name completeVerifySubscriber

Description This interface is used by LCS clients to complete the verification of
subscribers. Upon submission of a valid PIN and registration 1D, the client will
be returned a persistent alias

Mandatory clientID String. Identifies the LCS client

Parameters password String. Authenticates the LCS client
verificationAlias String. Unique id for this verification
code String. Code the end user has received from

Location Studio
Optional None
Parameters

Return Values

Response Code
Response Detail

subscriberlD

Integer value that maps to a response. See section
10

String. Optional additional text information about the
response”

Subscriber ID object that contains two Strings, Type
and Identification, defining the subscriber. Valid
types are phone number and operator aliases. For
this method the Type will always be “PSID”
(Persistent Subscriber ID).

16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL

Page 13

Interface Control Document

5 MESSAGING

The Wireless Messaging feature in Location Studio’s AAI provides messaging functionality for
third-party LCS clients. Wireless messages in this case are either SMS or WAP-push.

The feature supports both upstream and downstream messaging between Clients (applications)
and subscribers. Down-stream messages are defined as those initiated by the Client and sent to
one or more mobile stations through Location Studio. Upstream messages are originated my
mobile subscribers and ‘tunneled’ through Location Studio to LCS clients.

Advantages of using the Messaging part of the Location Studio AAl include:

e« The LCS Client is sheltered from having to support every underlying SMSC protocol (LSt
supports SMPP, UCP and CIMD?2),

e LSt ID protection services (subscriber alias) can be used for anonymity and privacy
e Message Transaction Detail Records provide auditing and accounting functions

The messaging feature of LSt also encompasses “WAP ask” functionality as well as WAP and
SMS privacy proxies. WAP Ask allows the subscriber to have LSt ask for permission to release
location to the Client. The privacy proxies provide:
¢ Replacement of phone number or WAP gateway generated identifier with Location
Studio-generated subscriber identifiers (TSID/PSID). The TSID/PSID may be used by the
application on all LSt external interfaces.
e TSID/PSID identifiers enable anonymity (application does know subscriber identity or
phone number). The PSID is persistent from connection to connection and can provide
Personalization and automatic Sign-on capabilities.

5.1 Typical Messaging Request/Response Sequences

5.1.1 Downstream SMS or WAP Example

The following call flow is from an example “Friend Finder” application. A user wants to send an
SMS or WAP message to all nearby friends by using that feature in a friend finder application.

User Client Location SMSC
Studio
1 >
. ——

w

Y

1. The end user requests that the client sends a message to the nearby friends.

2. The client issues a “sendSmsMessage” or “sendWapMessage” to LSt with the list of
recipients (any valid LSt identifier is acceptable. See section 8.1) and the message to be
sent.

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 14

Interface Control Document

3. LSt sends the messages to the SMSC or WAP GW and the SMSC or WAP GW sends
the messages to the users.

4. LSt sends a response code back to the client.

5.1.2 Upstream SMS Proxy Example

Upstream communications do not use the AAl directly, but are discussed here for completeness.
Upstream SMS communications use Location Studio’'s SMS Proxy. Use of the SMS proxy
requires the use of specially formed LSt URLSs to replace the standard client URLs in order to
have the session proxied by LSt. A description of the construction of these URLs can be found in
section 5.2.4. The following call flow is from an example “Where am 1?” application where privacy
is required. In this example application, the end user initiates the transaction by sending an SMS
asking for their current location.

Location Content Location
g SMSC Studio Provider Server
1 > >
-——2———
3 | -
- 4
5 | -
-t 6 -t -4

1. The end user sends the word “where” to the carrier's SMS-C and the SMS-C forwards
the message to the Location Studio SMS Proxy. The proxy forwards the message to the
LCS client after replacing the MSISDN with a TSID or PSID generated by LSt. The
format of these messages is described in section 5.2.4.

2. The LCS client requests location for that user.

3. LSt checks the authentication and authorization of the request and if successful, sends a
location request to Location Manager.

4. Location Manager responds with the location.
5. LSt returns the location to the client as requested.
6. The LCS client sends the response to the end user through Location Studio.

5.1.3 Upstream WAP Proxy Example

Upstream communications do not use the AAl directly, but are discussed here for completeness.
Upstream WAP communications use Location Studio’s WAP Proxy. Use of the WAP proxy
requires the use of specially formed LSt URLSs to replace the standard client URLs in order to
have the session proxied by LSt. A description of the construction of these URLs can be found in
section 5.2.3. The following call flow is from an example location content service where privacy is
required. In this example application, the end user initiates the transaction by sending a WAP
request for some location content.

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 15

o &

© 0N

Interface Control Document

g WAP Home Location Content Location
Gateway Server Studio Provider Server
I > >
-t 2 -
3 - - L
——4——
5 -
7 >
- 8 -
9 >

User connects to their homepage
Some location service link is served to the user.

The end user selects a location service that is proxied through LSt. The message is sent
to Location Studio. Location Studio forwards the message to the LCS client after
replacing the MSISDN or WAP identifier with a TSID or PSID generated by LSt. The
format of these messages is described in section 5.2.3.

The client requests location for that user.

LSt checks the authentication and authorization of the request and if successful, sends a
location request to Location Manager.

LM responds with the location.

LSt returns the location to the client as requested.

The LCS client sends the response to the end user through Location Studio.

Links on the response page that are not location sensitive are linked directly to the target.

5.1.4 WAP Ask Example

WAP ask is invoked when the subscriber has set their permissions to “Ask”. When a location request is
received in such a case, a WAP push is sent to the subscriber requesting permission to release the
location information. If the user says yes, the information is sent back to the client. For more information
on WAP ask see section 8.4.

16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 16

Interface Control Document

WAP Content Location Location
Gateway Provider Studio Manager

y
Y

1S
) J

y
Y

A
a

1. A passive location request is made for the location of a subscriber.

2. The Client makes a location request to LSt. LSt checks the subscriber profile and finds that the
subscriber has set the permission to “ask”.

LSt issues a WAP push/UP notification to the gateway. The gateway issues an alert to the
subscriber

The subscriber chooses to view the alert and is linked to the alert URL.

LSt serves up the “Ask” deck.

The subscriber responds with an allow location request.

LSt requests location from LM

LSt receives location from LM

. LSt returns location to the client

0. Client returns content to the subscriber.

w

Boo~NO O A~

5.2 Interface Description

5.2.1 sendSmsMessage

Name sendSmsMessage
Description Send an SMS message to the subscriber.
Mandatory clientlD String. identifies the LCS client
Parameters password String. Authenticates the LCS client
body String. The actual message being sent. The
maximum length of this message is configurable by
the operator. If the body length exceeds the
maximum allowed by the operator the message will
be truncated. The default maximum is 160
characters.
recipients Subscriber ID object. One or more recipients as end
user identifiers. Valid end user identifiers are defined
in section 8.1. The maximum number of recipients is
25.
16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 17

Interface Control Document

Optional delimiter
Parameters

String. If the message must be split in to many
messages, the delimiter specifies where they may
be split. The length of the delimeter string must be
equal to one.

Response Code
Response Detail

Subscriber

Return Values If more than one recipient was selected, the return response will have an
array of responses with each of the subscribers having a reponse..

Integer value that maps to a response. See section
10

String. Optional additional text information about the
response

Subscriber ID object. Type and Identification of the
subscriber. Valid types are phone number and
operator aliases. For a description of the alias types
see section 8.1.

5.2.2 sendWapMessage

Name sendWapMessage
Description Send a WAP message to the subscriber.
Mandatory clientlD String. Identifies the LCS client
Parameters password String. Authenticates the LCS client
body String. The actual message being sent. The
maximum length of this message is configurable by
the operator. If the body length exceeds the
maximum allowed by the operator the message will
be truncated. The default maximum is 160
characters.
mediaType The WAP media type. See section 8.2 for details
recipients Subscriber ID object. One or more subscribers as
end user identifiers. Valid end user identifiers are
defined in section 8.1. The maximum number of
recipients is 25.
Optional none
Parameters
Return Values If more than one recipient was selected, the return response will have an
array of responses with each of the subscribers having a reponse.
Response Code Integer value that maps to a response. See section
10
Response Detalil String. Optional additional text information about the
response
Subscriber Subscriber ID object. Type and Identification of the
subscriber. Valid types are phone number and
operator aliases. For a description of the alias types
see section 8.1

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL

Page 18

Interface Control Document

5.2.3 WAP Proxy Format

This section describes the format of the WAP proxy URLs. For context and more information, see the
“Upstream WAP Proxy” call flow in section 5.1.3.

In step 3 of the example call flow, the end user initiates a transaction by selecting a location service that
is proxied through LSt. In order for the user’s request to be proxied by LSt, the URL must be in the
following format:

http://<LSt host name>/<Proxy Path>/<Original path>/<SMS Bnumber><Original CGI
parameters>[&<MSISDN|WAP ID parameter|other resolvable 1D>]

where

e < LSt host name> is the host name of LSt,

e <Proxy Path> is the path to the LSt Wap Proxy,

e < Original path> is the original path of the taret URL,

e < SMS Bnumber> is the B number of the LCS client when it is used with SMS. This humber is
used also in the WAP case to identify the LCS client original CGI parameters,

e < Original CGI parameters> are any CGIl parameters needed by the user’s request and

¢ < MSISDN|WAP ID parameter|other resolvable ID> uniquely identifies the subscriber. This part is
added by the WAP Gateway, which means that the URL without the [...] part is the format of the
link selected by the end user. The inclusions of the MSISDN will be different for different WAP
gateways. Some gateways will include the Wap ID and some will put the id in the header rather

than in the URL. Location Studio handles all cases by professional services adaptation of its
Wap Proxy.

For example, here is an example of the URL for a message between the WAP gateway and the LSt
proxy:

http://Ist wap _proxy.operator.com/locationstudio/wapproxy/dialog/start/4477?action=12345&MSISDN=46
733201025

The LSt proxy forwards all incoming messages to an LCS client. The LSt proxy looks up the client and its
corresponding Post URL field using the SMS BNumber part of the incoming URL and replaces the
MSISDN parameter with a TSID, PSID or OSID depending on configuration parameters in the client
profile.

The message send by the LSt proxy to the LCS client will be in the following format:

http://<LCSClientPostURL>/<QriginalPath><Original CGIParameters>&TSID|PSID|OSID=<string>[TSID|P
SID=<string>]

where
¢ <LCSClientPostURL> is the post URL found in the SMS BNumber look up,
e <OriginalPath> is the path found in the incoming message,
e <OriginalCGIParameters> are the CGI parameters found in the incoming message and
e <string> is the TSID, PSID or OSID associated with the incoming MSISDN.

This is the format in which the LCS client should expect to receive messages from the LSt WAP Proxy.
For example, if the LCD client application is FriendFinder at the operator M2, the outgoing URL may be:

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 19

Interface Control Document

http://wap.M2ff.com/dialog/start?action=12345&PSID=7656754215342364536253&TSID=1a2e3a3456aa
c3

5.2.4 SMS Proxy Format
This section describes the format of the SMS proxy URLs. For context and more information, see the
“Upstream SMS Proxy” call flow in section 5.1.2.

In step 1 of the example call flow, the end user initiates a transaction by sending an SMS message to an
LCS client that is proxied through LSt. The SMS proxy feature requires that LSt proxy all SMS traffic to
and from the specified LCS client. The LSt SMS proxy will forward all incoming requests to the LCS
client, translating MIN or MSISDN to a TSID or PSID for each transaction.

The URL posted to the LCS client application has the following format:
http://<LCSClientPostURL>?TSID|PSID|OSID=<digits>&message=<SMS sent by user>

where
¢ <LCSClientPostURL> is the post URL of the LCS client application,

e <digits> is the TSID, PSID or OSID associated with the MIN or MSISDN of the incoming SMS
message and

e <SMS sent by user> is the SMS message from the incoming message.

This is the format in which the LCS client should expect to receive messages from the LSt SMS Proxy.
For example, if the LCD client application is FriendFinder at the operator M2, the outgoing URL may be:

http://sms.M2ff.com?PSID=7656754215342364536253&message="Where”

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 20

Interface Control Document

6 EVENT BILLING

The Wireless Billing feature in Location Studio’s AAI provides LCS clients the functionality to
submit application/event-level billing records.

Billing events submitted through this interface convey consolidated macro-transactions that result
from an action that is billable to the end subscriber using the service. For example, a billing event
may be submitted by a yellow-pages application provider for a “premium content search” resulting
in a single billing entry on the subscriber's account. However, in order to complete that single
billable event there may have been multiple underlying micro-transactions required to complete
the request — one or more location requests, one or more geo-coding events, a map rendered,
turn-by-turn directions, etc. These micro-events are consolidated into one macro billing event.

Advantages of using the WBP include:

« Service-level billing events allow integration with the operator billing system so that
transactions are charged directly on the subscriber's monthly bill, or debited from pre-pay
accounts.

¢ Facilitates revenue sharing and Bill-On-Behalf-Of relationships between operators and
application providers.

e Supports correlation of micro-transactions with the service billable macro-transaction for
better understanding of cost-of-delivery.

¢ No need to custom integration to the operator’s billing system.

6.1 Typical Event Billing Request/Response Sequence

Typically the LCS client and the carrier that hosts a Location Studio have defined the possible
billing events that particular LCS client may generate. Each billing event is assigned an id, unique
for that LCS client, and provisioned in Location Studio.

The actual end user actions behind each event are agreed to by the LCS client provider and the
carrier. The LCS client is responsible for keeping track of when these actions occur (consolidating
micro events if necessary) and submitting billing events to Location Studio.

: Location
a Client Studio

W

1. User requests some billable action from the client
2. Clientissues “sendEvent” to LSt.
3. LStreturns “OK”

6.2 Interface Description

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 21

Interface Control Document

OPENWAVE PROPRIETARY AND CONFIDENTIAL

6.2.1 sendEvent
Name sendEvent
Description Send a macro billing event to LSt for the operator to bill the subscriber.
Parameters clientlD String. Identifies the LCS client
password String. Authenticates the LCS client
eventiD String. Identifies what event that has occurred. This
value must be known by both the operator and the
client to identify and successfully bill the event.
Default maximum is 50 characters.
subscriber Subscriber ID object. Identifies the end user that will
be billed for this event. Valid end user identifiers are
defined in section 8.1.
startTime Date object. Time stamp when this event started.
The format of the time is YYYY/MM/DD
HH:mm:ss:zzz
endTime Date object. Time stamp when this event ended.
The format of the time is YYYY/MM/DD
HH:mm:ss:zzz
trackinglD String. Identifier for other information that the LCS
client wishes to pass to the operator. Default
maximum is 50 characters.
Optional none
Parameters
Return Values Response Code Integer value that maps to a response. See section
10
Response Detail String. Optional additional text information about the
response
16 January 2003

Page 22

Interface Control Document

7 LOCATION REQUESTS

Location Studio supports 3 types of location requests.

e Oneis XML over http and is based based on the Location Interoperability Forum (LIF)
recommendation, Mobile Location Protocol (MLP), as the standards based location
interface for third-party LCS clients. This protocol is standalone and not considered to be
part of the AAIl. Please see the LIF MLP 3.0 statement of Compliance document for
further details.

¢« The second one is also based on the LIF MLP 3.0 standard, but it is adapted to web
services. This protocol is part of AAI.

The third one is a more streamlined request model with a subset of features available. This protocol is
based on LIF MLP, but all parameters that are foreseen to not being used so often are removed. For most
applications it will be sufficient to use this part of AAI.

7.1 LIF

The MLP specification is very extensive, and includes many parameters in anticipation of future
needs. As such, the complete specification is not implemented within Location Studio — only the
basic set of features required for today’s LBS applications (Standard Location Immediate
Service). Location Studio will maintain compliance with the relevant portions of the LIF MLP
specification as it is updated and ratified (currently MLP 3.0).

The LIF location requests may be made the standards compliant XML messages to LSt or with the WSDL
interface described in this section.
7.2 Simple Location Request

For those applications that only requires basic location information the simple location request
offers a streamlined, more efficient and simpler method of obtaining that information. This is
enough for most LCS clients.

7.3 Typical Location Request/Response Sequence

A typical request/response sequence for both the LIF and the Simple Location Request would
consist of a subscriber requesting some location based content from a client as in the following
example:

. Location
g Client Studio

H
y

|

A

A
I

1. User requests some location content from the client
2. Client issues “getLocation” to LSt.
3. LSt returns the location information to the client
4. Client returns location content to the user.
16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 23

Interface Control Document

7.4 Interface Description

Although both request types are made with the same call, for clarity the descriptions are separated into 2
sections.

7.4.1

LIF based request

All of the parameters and return values are compliant with the LIF specification. For detailed
description on each of these values please refer back to the LIF specification version 3.0.0[3].
For detailed information on what LIF functionality are supported by LSt, please refer to the
Openwave LSt Interface Statement of Compliance for LIF MLP[4].

7.4.1.1 getLocation
Name getLocation
Description Get the location of up to 25 subscribers. For request with multiple
subscribers, Location Studio will attempt to retrieve all the locations and
return them in a single response. If all locations are not received by location
studio within the timeout period, only those locations that have been received
will be returned.
Mandatory clientlD String. Identifies the LCS client
Parameters clientPwd String. Authenticates the LCS client
subscriber Subscriber ID object. Type and Identification of the
subscriber. Valid types are phone number and
operator aliases. For a description of the alias types
see section 8.1. One may submit multiple
subscribers in a single request for positioning.
Optional respReq String. This attribute represents response time
Parameters requirement. Values: NO_DELAY| LOW_DELAY|
DELAY_TOL
Default: DELAY_TOL.
respTimer Integer. Defines a timer for the response time within
which the current location should be obtained and
returned to the LCS Client.
Units: seconds
Default: 0
lIAcc Integer. Longitude and latitude accuracy
Units: seconds
Default: 0
horAcc Integer. Requested horizontal accuracy
Units: meters
Default: 0
altAcc Integer. Accuracy of altitude
Units: meters
Default: 0
maxLocAge Integer. This states the maximum allowable age in
seconds of a location sent as a response to a
location request
Units: seconds
Default: 0
locType String. the type of location requested
16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL

Page 24

Interface Control Document

Values: LAST | CURRENT| CURRENT_OR_LAST
Default: CURRENT

mLP300Positions]]
time

radius

altAcc

alt

speed

direction

result
resld
utcOff
levConf

addInfo

prioType String. Defines the priority of a location request
Values: NORMAL | HIGH
Default: NORMAL

Return Values addInfo String. A text string containing additional information

about a certain result

result String. A text string indicating the result. Location
Studio is compliant with the error messages outlined
in the LIF specification[3]

resid Integer. a numeric representation of a result

message. Location Studio is compliant with the
error IDs outlined in the LIF specification[3]

String. the time when the positioning was performed
Format: yyyyMMddhhmmss

String. The first ordinate in a coordinate system
Format: DD MM SS.SSSH

String. Second ordinate in a coordinate.system.
This is optional if it is a linear coordinate system

Format: DD MM SS.SSSH

String. third ordinate in a coordinate.system. This is
optional if it is a 2D coordinate system

Format: meters

String. The uncertainty radius is the radius of the
uncertainty; this is the geodesic distance between
the arc and the position point..

Units: meters

String. Accuracy of altitude in meters
Units: meters

String. The altitude of the mobile station.
Units: meters

String. The speed of the MS

Units: meters/second

String. Specifies the direction that a positioned MS is
moving in

Units: degrees

String. A text string indicating the result of an
individual positioning

String. a numeric representation of a result message

String. Specifies the UTC offset in hours and
minutes. Positive values indicate time zones east of
Greenwich

String. the probability in percent that the MS is
located in the position area that is returned

String. A text string containing additional information

16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL

Page 25

7.4.2

Interface Control Document

subscriber

about a certain result

MLP300Msid object. MLP ID Type and Identification
of the subscriber. Valid types are phone number
and operator aliases. For a description of the alias
types see section 8.1.

Simple Location request

7.4.2.1 getLocation

Name getLocation
Description Get the location of up to 25 subscribers. For request with multiple
subscribers, Location Studio will attempt to retrieve all the locations and
return them in a single response. If all locations are not received by location
studio within the timeout period, only those locations that have been received
will be returned.
Mandatory clientlD String. Identifies the LCS client
Parameters password String. Authenticates the LCS client
Timeout Integer. Maximum time before a response must be
returned.
Units: seconds
maxLocAge Integer. This states the maximum allowable age of a
location sent as a response to a location request
Units: seconds
subscriber Subscriber ID object. Type and Identification of the
subscriber. Valid types are phone number and
operator aliases. For a description of the alias types
see section 8.1. One may submit multiple
subscribers in a single request for positioning.
Optional none
Parameters

Return Values

response Code
response Detail

WLP10Position[]
response Code

response Detail

subscriber

latitude

Integer value that maps to a response. See section
10

String. Optional additional text information about the
response

Integer value that maps to a response. See section
10

String. Optional additional text information about the
response

Subscriber ID object. Type and Identification of the
subscriber. Valid types are phone number and
operator aliases. For a description of the alias types
see section 8.1.

String. The latitude returned

Format: DD MM SS.SSSH

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL

Page 26

Interface Control Document

longitude String. The longitude returned
Format: DD MM SS.SSSH
time String. the time when the positioning was performed
Format: yyyyMMddhhmmss
radius String. radius of a circle of uncertainty
Units: meters

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 27

Interface Control Document

8 APPLICATION NOTES

8.1 Valid LSt ID Types

Identifier

Description

LIF
Type(s)

AAI LSt
type

Example

Phone
number

Either Mobile Identification
Number (the mobile phone
number in a TIA based network)
or Mobile Station ISDN (An
MSISDN consists of a country
code, a national destination code
and a subscriber number.
MSISDNSs are used in ETSI
based networks).

MIN,
MSISDN

MSID

13033811000

Operator
Alias

This is an alias defined by the
operator or other external
agency. These could be an login
ID, NAI, ESN, WAP ID, email
address, etc. Specific valid
operator aliases are defined by
the serving operator.

IMSI, IMEI
OPE_ID

OsID

192383@

gateway.abc.com

Temporary
Alias

This is an alias assigned by LSt
for a finite period of time.

SESSID

TSID

21654485

Persistent
Alias

This is an alias assigned by LSt
for an indeterminate period of

ASID

PSID

21654485

time.

8.2 Valid Media Types

Location Studio passes through the media type to the WAP gateway. As a result, the LCS client must
ensure that both the target handset and the gateway support the proposed media type. The
recommended, and default, media type for messaging requests is Service indication (text/vnd.wap.si). For
definitions of valid media types please see the wap 2.0 specification.

8.3 WAP proxy

Since the WAP proxy passes CGI parameters in the URL, the LCS client must support the use of HTTP
GET to receive the proxied parameters.

The WAP proxy acts a means of verifying implicit permission of active location requests. An active
location request is one made by a subscriber to locate themselves. By using the WAP proxy in such a
request, LSt can confirm that it is an active request and grant location without having to use WAP ASK.
WAP Ask is used to request permission in a passive scenario.

16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 28

Interface Control Document

8.4 WAP Ask

The WAP ask feature allows the subscriber to have control of the location information without necessarily
having a formal permission relationship with the client. This feature is only relevant for passive location
requests. A passive request is made by a third party, requesting the location of a particular subscriber.
Active location requests, those made by the subscriber to locate themselves, have implicit authorization
and are handled by the WAP proxy feature to ensure that it is an active request.

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 29

Interface Control Document

9 EXAMPLE REQUESTS AND RESPONSES

9.1 Pseudo example

Pseudo code for fetching a persistent alias that may be used in subsequent requests to LSt:

initRequest = new WVP10InitRequest(new Subscriberld("MSID", "46730511400"), "Please reply to this
message with %CODE% to become a member of FriendFinder.", "% CODE%");

initResponse = wviValidation.initiateVerifySubscriber("theasp", "thepwd", initRequest);

if (initResponse.getStatus().equals("ok™))

{

validationSubscriberld = initResponse.getVsid();
}
completionRequest = new WVP10CompletionRequest(validationSubscriberld, "1234");
completionResponse = wviValidation.completeVerifySubscriber("theasp”, "thepwd", completionRequest);
if (completionResponse.getStatus().equals("ok"))

{

persistentSubscriberld = completionResponse.getPsid();

9.2 Java example

The following Simple AAI demo in JAVA authenticates a client, validates a subscriber and then sends an
SMS message to the subscriber.

i mport com openwavecorp.lst.client.*;
inmport electric.registry.Registry;
inmport electric.util.Context;

/**

* Sinple AAl deno. Authenticates a client, validates a subscriber and
* then sends an SMS nessage to the subscriber.

*/

public class LStdientDeno {

public static final void main(String [] args) {

try {
/1 Web service URL
String url =

"http://1ocal host: 8080/ ocati onst udi o/ webservi ces/ aai . wsdl ";

String clientld = "t heasp";
String clientPwd = "t hepwd";

/1 Create a subscriber

Subscri berld subscriber = new Subscriberld();
subscri ber. set Type("MsI D");

subscri ber.set1d("3033813000");

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 30

Interface Control Document

/] Bind to validation service
W/I Val i dation validation = (WI Validation)Registry.bind(url,
W/I Val i dati on. cl ass);

/1 Authenticate client
W/P10Aut hent i cati onResponse aut hResp =
val idation.authenticateCient(clientld, clientPwd);
i f (aut hResp. get ResponseCode()! =Constants. OK) {
t hrow new Exception("Cient authentication failed:
"+aut hResp. get ResponseCode() +", " +aut hResp. get ResponseDetai |l ());

/] Validate subscriber
W/P10Val i dat i onResponse val Resp =
val i dation. val i dat eSubscription(clientld,clientPwd, subscriber);
i f (aut hResp. get ResponseCode()! =Const ants. OK) {
t hrow new Exception("Subscriber validation fail ed:
"+val Resp. get ResponseCode() +", " +val Resp. get ResponseDetai |l ());

/1 Bind to nmessagi ng service
WM Messagi ng nessagi ng = (WM Messagi ng) Regi stry. bi nd(url,
WM Messagi ng. cl ass) ;

/1 Send an SMS nessage to the subscri ber

WWP10SnsRequest snsRequest = new WWP10SnsRequest ("Hell o
subscri ber", subscri ber);

WWP1lOMessagi ngResponse nsgResp =
nessagi ng. sendSnsMessage(clientld, client Pwd, snsRequest) ;

i f (msgResp. get ResponseCode() ! =Const ants. OK) {

t hrow new Exception(" Sendi ng SMS fail ed:

"+negResp. get ResponseCode() +", "+nmsgResp. get ResponseDetai | ());

}

System out. println("Mssage sent");

catch(electric.util.WappedException e) {
e. get Exception(). printStackTrace();
e.printStackTrace();

}

catch(Exception e) {
System out . println(e.get Message());
e.printStackTrace();

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 31

Interface Control Document

10 ERROR MESSAGES

Result ID | Message Description
-1 UNDEFINED Undefined state
0 OK Indicates that an action was successful
10 SYSTEM_FAILURE A server side system failure occurred
100 CLIENT_AUTHENTICATION_FAI | Indicates that the provided client does is not authorized
LED to perform the requested action: Value = 100
101 INCORRECT PASSWORD The password provided is incorrect
102 INVALID_ARGUMENT an argument passed to one of the methods of an
interface was either out of range, null when null is not
allowed, etc
300 CLIENT_NOT_FOUND The provided client was not found
301 CLIENT_NOT_ENABLED The client is not enabled.
310 SUBSCRIBER_NOT_FOUND The provided subscriber was not found
311 INVALID SUBSCRIBER_ID An illegal subscriber type or subscriber id was provided
312 UNSUPPORTED_SUBSCRIBER | Some operations only support some subscriber types
_TYPE (MSID, PSID, TSID etc), this code indicates that
requested action does not support the provided
subscriber type
313 MASTER_PRIVACY_DENY_ALL | The request failed because master privacy was
enabled for the subscriber.
314 OPERATOR_SERVICE_NOT_E | The operator has disabled this client.
NABLED
315 SUBSCRIBER_SERVICE_NOT__ | The subscriber has disabled access for this client.
ENABLED
316 SUBSCRIBER_TYPE_NOT_ALL | The provided subscriber id type is not allowed.
OWED
3001 BILLING_NOT_AUTHORIZED Response code indicating that billing was not
authorized
3002 BILLING_DISABLED Response code indicating that billing is disabled
4001 FAILED _TO_SEND_SMS Indicates that the server failed to send the SMS
message
4002 SUBSCRIBER_ERRORS Indicates that errors occurred for one or more of the
provided subscribers
4003 MESSAGING_NOT_ALLOWED Response code indicating that messaging was not
allowed
4004 MESSGING_DISABLED Response code indicating that messaging is disabled
5000 WRONG_PIN Wrong PIN supplied
5001 INCORRECT_VERIFICATIONALI | The verification alias supplied is not correct
AS
5003 UNSUPPORTED_SUBSCRIBER | The subscriber type supplied is not allowed for the
TYPE method called
5004 PERMISSION DOES NOT_ EXI A permission for this subscriber does not exists
16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL

Page 32

Interface Control Document

ST

5005 PSID ALREADY_EXISTS A PSID for this subscriber/client relation does already

5006 SUBSCRIBERSTATUS_INVALID | The subscriberValidation failed
CHECK

5007 SUBSCRIBERSTATUS_TRANSF | The subscription has been transferred
ERRED

5008 SUBSCRIBERSTATUS_NOFUN | The subscription has no funds available
DS

5009 SUBSCRIBERSTATUS_NOTSU | The subscription does not exists (or does not belong
BSCRIBER the operator)

5010 SUBSCRIBERSTATUS_AUTHO | The client is not authorized to perform this method
RIZATIONFAILED

5011 VALIDATION DISABLED Response code indicating that validation is disabled

6000 POSITION_METHOD_FAILURE Location server can not meet the request requirements

6001 CONGESTION_IN_LOCATION_ | Request can not be handled due to congestion in the
SERVER location server

6002 CONGESTION_IN_MOBILE_NE | Request can not be handled due to congestion in the
TWORK mobile network

6003 ABSENT_SUBSCRIBER The subscriber is currently not reachable

6004 TOO_MANY_POSITION_ITEMS | Too many position items have been specified in the

request

6005 FORMAT_ERROR Request contained a format error

6006 SYNTAX_ERROR Request contained a syntax error

6010 INVALID_PROTOCOL_ELEMEN | Request contained an invalid protocol element value
T _VALUE

6011 INVALID_PROTOCOL_ELEMEN | Request contained an invalid protocol element attribute
T ATTRIBUTE

6012 PROTOCOL_ELEMENT_VALUE | Request contained an unsupported protocol element
_NOT_SUPPORTED value

6013 PROTOCOL_ELEMENT_ATTRIB | Request contained an unsupported protocol element
UTE_VALUE_NOT_SUPPORTE | value
D

6014 QOP_NOT_ ATTAINABLE The requested Quality of Position could not be provided

6015 POSITIONING_NOT_ALLOWED | Positioning not allowed

6016 DISALLOWED_BY_LOCAL_REG | Positioning disallowed
ULATIONS

6017 MISCONFIGURATION_OF_LOC | Location server is not properly configured
ATION_SERVER

6018 LOCATION_NOT_ALLOWED Location not allowed

10.1 Location Request Error Codes

Location Studio's compliance with the LIF MLP 3.0 specification includes compliance with the error codes
defined by that specification. As a result, both forms of the getLocation wsdl operation described in the
"Location Requests" section of this document return error codes that originated from LIF MLP error
codes. Specifically, if an error occurs while attempting to satisfy a getLocation request, Location Studio

16 January 2003

OPENWAVE PROPRIETARY AND CONFIDENTIAL

Page 33

Interface Control Document

returns a LIF MLP error code, which is then mapped to one of the above AAI error codes. AAl error
codes in the range 6000-6999 directly correspond to error codes defined in the LIF MLP specification.
However, some of the AAl error codes in the range 0-1000 are not compliant with the LIF MLP
specification and therefore cannot be returned by the getLocation requests. Note that the mapping is only
done when using the simple location request. If a MLP3.0 request is sent the LIF MLP error code will be

returned.

For example, the AAl includes an "INCORRECT_PASSWORD" error code but the LIF MLP specification
does not. All authorization failures in the LIF MLP specification are lumped into the LIF MLP
"UNAUTHORIZED APPLICATION" error code. Therefore, the getLocation request can never return an
"INCORRECT_PASSWORD" error code. However, the other AAI requests (billing, messaging and
validation requests) are not limited to the LIF MLP error codes and can therefore return more detailed

error codes defined by the AAI.

The following table shows the mapping from LIF MLP error codes to AAl error codes.

LIF MLP error code

AAl error code

OK(0)

OK(0)

SYSTEM_FAILURE(1)

SYSTEM_FAILURE(10)

UNSPECIFIED_ERROR(2)

UNDEFINED(-1)

UNAUTHORIZED_APPLICATION(3)

CLIENT_AUTHENTICATION_FAILED(100)

UNKNOWN_SUBSCRIBER(4)

SUBSCRIBER_NOT_FOUND(310)

ABSENT_SUBSCRIBER(5)

ABSENT_SUBSCRIBER(6003)

POSITION_METHOD_FAILURE(6)

POSITION_METHOD_FAILURE(6000)

CONGESTION_IN_LOCATION_SERVER(101)

CONGESTION_IN_LOCATION_SERVER(6001)

CONGESTION_IN_MOBILE_NETWORK(102)

CONGESTION_IN_MOBILE_NETWORK(6002)

TOO_MANY_POSITION_ITEMS(104)

TOO_MANY_POSITION_ITEMS(6004)

FORMAT _ERROR(105)

FORMAT_ERROR(6005)

SYNTAX_ERROR(106)

SYNTAX_ERROR(6006)

INVALID_PROTOCOL_ELEMENT_VALUE(110)

INVALID_PROTOCOL_ELEMENT_VALUE(6010)

INVALID_PROTOCOL_ELEMENT_ATTRIBUTE(111)

INVALID_PROTOCOL_ELEMENT_ATTRIBUTE(6011)

PROTOCOL_ELEMENT_VALUE_NOT_SUPPORTED(112)

PROTOCOL_ELEMENT VALUE_NOT SUPPORTED(6012)

PROTOCOL_ELEMENT_ATTRIBUTE_
VALUE_NOT_SUPPORTED(113)

PROTOCOL_ELEMENT_ATTRIBUTE_
VALUE_NOT_SUPPORTED(6013)

QOP_NOT_ATTAINABLE(201)

QOP_NOT_ATTAINABLE(6014)

POSITIONING_NOT_ALLOWED(202)

POSITIONING_NOT ALLOWED(6015)

DISALLOWED BY_LOCAL REGULATIONS(204)

DISALLOWED BY_LOCAL REGULATIONS(6016)

MISCONFIGURATION_OF LOCATION_SERVER(207)

MISCONFIGURATION _OF LOCATION_SERVER(6017)

Note also that even though the LIF MLP request includes a list of subscribers, it does not include an error
code that indicates partial success. In other words, if the getLocation request failed for 1 or more
subscribers but succeeded for 1 or more other subscribers, there is no LIF MLP error code to indicate
such a condition. Therefore, the developer is responsible for looking at the result code for each and
every subscriber in the response list. Do not rely on the overall error code. It may say the request was
successful but that does not guarantee that the location of all subscribers is successfully returned.

If you are using the getLocation operation with LIF MLP arguments, then the response contains an array
of mLPPaositions, one for each subscriber passed in the request. Each mLPPositions element contains
resld, result and addinfo elements that tell you whether the location request for the associated subcriber
was successful or not. Look at these elements for each subscriber individually. Do not rely on the overall

resld, result and addInfo elements.

If you are using the getLocation operation with simplified arguments, then the response contains an array
of WLP10Position, one for each subscriber passed in the request. Each WLP10Position element
contains reponseCode and responseDetail elements that tell you whether the location request for the

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL

Page 34

Interface Control Document

associated subcriber was successful or not. Look at these elements for each subscriber individually. Do
not rely on the overall responseCode and responseDetail elements.

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 35

Interface Control Document

11 WSDL

11.1 Subscriber Validation

<?xml version="1.0" encoding="UTF-8"?>
<l--generated by GLUE on Thu Aug 08 14:33:42 CEST 2002-->
<definitions name="WVI|ValidationService" targetNamespace="http://www.openwave.com/wsdl/WVIValidationService/"
xmins:tns="http://www.openwave.com/wsdl/WVIValidationService/" xmiIns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:http="http://schemas.xmlsoap.org/wsdl/http/" xmIns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmins:wsd|="http://schemas.xmlsoap.org/wsdl/* xmIns="http://schemas.xmlsoap.org/wsdl/"
xmins:tme="http://www.openwave.com/" xmIns:ns11="http://www.openwave.com/package/com.openwavecorp.lst.client/">
<types>
<schema xmIns="http://www.w3.0rg/2001/XMLSchema" targetNamespace="http://www.openwave.com/package/com.openwavecorp.lst.client/">
<complexType name="WVP10AuthenticationResponse">
<complexContent>
<extension base="ns11:Response"/>
</complexContent>
</complexType>
<complexType name="Response">
<sequence>
<element name="responseCode" type="int"/>
<element name="responseDetail" nillable="true" type="string"/>
</sequence>
</complexType>
<complexType name="WVP10ValidationResponse">
<complexContent>
<extension base="ns11:Response">
<sequence>
<element name="transferredDate" nillable="true" type="dateTime"/>
<element name="operatorName" nillable="true" type="string"/>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="WVP10Subscriberld">
<complexContent>
<extension base="ns11:Subscriberld"/>
</complexContent>
</complexType>
<complexType name="Subscriberld">
<sequence>
<element name="id" nillable="true" type="string"/>
<element name="type" nillable="true" type="string"/>
</sequence>
</complexType>
<complexType name="WVP10InitResponse">
<complexContent>
<extension base="ns11:Response">
<sequence>
<element name="verificationAlias" nillable="true" type="string"/>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="WVP10InitRequest">
<sequence>
<element name="subscriber" nillable="true" type="ns11:WVP10Subscriberld"/>
<element name="message" nillable="true" type="string"/>
<element name="codeSignature" nillable="true" type="string"/>
<element name="messageDelimiter" nillable="true" type="string"/>
</sequence>
</complexType>
<complexType name="WVP10CompletionResponse">
<complexContent>
<extension base="ns11:Response">
<sequence>
<element name="subscriber" nillable="true" type="ns11:WVP10Subscriberld"/>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="WVP10CompletionRequest">
<sequence>
<element name="verificationAlias" nillable="true" type="string"/>
<element name="code" nillable="true" type="string"/>
</sequence>
</complexType>
</schema>

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 36

Interface Control Document

</types>
<message name="authenticateClientOIn">
<part name="clientID" type="xsd:string"/>
<part name="password" type="xsd:string"/>
</message>
<message name="authenticateClientOOut">
<part name="Result" type="ns11:WVP10AuthenticationResponse"/>
</message>
<message name="validateSubscriptionlIn">
<part name="clientID" type="xsd:string"/>
<part name="password" type="xsd:string"/>
<part name="subscriber" type="ns11:WVP10Subscriberld"/>
</message>
<message name="validateSubscription1Out">
<part name="Result" type="ns11:WVP10ValidationResponse"/>
</message>
<message name="initiateVerifySubscriber2In">
<part name="clientID" type="xsd:string"/>
<part name="password" type="xsd:string"/>
<part name="request" type="ns11:WVP10InitRequest"/>
</message>
<message name="initiateVerifySubscriber20ut">
<part name="Result" type="ns11:WVP10InitResponse"/>
</message>
<message name="completeVerifySubscriber3in">
<part name="clientID" type="xsd:string"/>
<part name="password" type="xsd:string"/>
<part name="request" type="ns11:WVP10CompletionRequest"/>
</message>
<message name="completeVerifySubscriber30Out">
<part name="Result" type="ns11:WVP10CompletionResponse"/>
</message>
<portType name="WVIValidation">
<operation name="authenticateClient" parameterOrder="clientID password">
<input name="authenticateClient0In" message="tns:authenticateClient0In"/>
<output name="authenticateClientOOut" message="tns:authenticateClientOOut"/>
</operation>
<operation name="validateSubscription" parameterOrder="clientID password subscriber">
<input name="validateSubscription1In" message="tns:validateSubscription1in"/>
<output name="validateSubscription1Out" message="tns:validateSubscription1Out"/>
</operation>
<operation name="initiateVerifySubscriber" parameterOrder="clientID password request">
<input name="initiateVerifySubscriber2In" message="tns:initiateVerifySubscriber2In"/>
<output name="initiateVerifySubscriber20ut" message="tns:initiateVerifySubscriber20ut"/>
</operation>
<operation name="completeVerifySubscriber" parameterOrder="clientID password request">
<input name="completeVerifySubscriber3In" message="tns:completeVerifySubscriber3in"/>
<output name="completeVerifySubscriber3Out" message="tns:completeVerifySubscriber3Out"/>
</operation>
</portType>
<binding name="WVIValidation" type="tns:WVIValidation">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="authenticateClient">
<soap:operation soapAction="authenticateClient" style="rpc"/>
<input name="authenticateClient0In">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<finput>
<output name="authenticateClient0Out">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVI|ValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="validateSubscription">
<soap:operation soapAction="validateSubscription" style="rpc"/>
<input name="validateSubscription1in">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<finput>
<output name="validateSubscription1Out">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVI|ValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="initiateVerifySubscriber">
<soap:operation soapAction="initiateVerifySubscriber" style="rpc"/>
<input name="initiateVerifySubscriber2In">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVI|ValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<finput>
<output name="initiateVerifySubscriber20ut">

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 37

Interface Control Document

<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="completeVerifySubscriber">
<soap:operation soapAction="completeVerifySubscriber" style="rpc"/>
<input name="completeVerifySubscriber3In">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<finput>
<output name="completeVerifySubscriber3Out">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
</binding>
<service name="WVIValidationService">
<documentation>Wireless Validation Interface WebService</documentation>
<port name="WVIValidation" binding="tns:WVIValidation">
<soap:address location="http://trinity.swed.openwavecorp.com:8080/locationstudio/webservices/validation"/>
</port>
<[service>
</definitions>

11.2 Messaging

<?xml version="1.0" encoding="UTF-8"?>
<!l--generated by GLUE on Thu Aug 08 14:33:04 CEST 2002-->
<definitions name="WMIMessagingService" targetNamespace="http://www.openwave.com/wsdl/WMIMessagingService/"
xmlins:tns="http://www.openwave.com/wsdl/WMIMessagingService/" xmIns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:http="http://schemas.xmlsoap.org/wsdl/http/* xmIns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmins:wsdl="http://schemas.xmlsoap.org/wsdl/" xmIns="http://schemas.xmlsoap.org/wsdl/"
xmins:tme="http://www.openwave.com/" xmins:ns11="http://www.openwave.com/package/com.openwavecorp.lst.client/">
<types>
<schema xmIns="http://www.w3.0rg/2001/XMLSchema" targetNamespace="http://www.openwave.com/package/com.openwavecorp.lst.client/">
<complexType name="WMP10MessagingResponse">
<complexContent>
<extension base="ns11:Response">
<sequence>
<element name="subscriberStatus" nillable="true" type="ns11:ArrayOfWMP10SubscriberStatus"/>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="Response">
<sequence>
<element name="responseCode" type="int"/>
<element name="responseDetail" nillable="true" type="string"/>
</sequence>
</complexType>
<complexType name="WMP10SubscriberStatus">
<complexContent>
<extension base="ns11:Response">
<sequence>
<element name="subscriberld" nillable="true" type="ns11:WMP10Subscriberld"/>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="ArrayOfWMP10SubscriberStatus">
<complexContent>
<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="ns11:WMP10SubscriberStatus[]"/>
</restriction>
</complexContent>
</complexType>
<complexType name="WMP10Subscriberld">
<complexContent>
<extension base="ns11:Subscriberld"/>
</complexContent>
</complexType>
<complexType name="Subscriberld">
<sequence>
<element name="id" nillable="true" type="string"/>
<element name="type" nillable="true" type="string"/>
</sequence>
</complexType>
<complexType name="WMP10SmsRequest">

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 38

Interface Control Document

<complexContent>
<extension base="ns11:WMP10MessagingRequest">
<sequence>
<element name="delimiter" nillable="true" type="string"/>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="WMP10MessagingRequest" abstract="true">
<sequence>
<element name="body" nillable="true" type="string"/>
<element name="recipients" nillable="true" type="ns11:ArrayOfWMP10Subscriberld"/>
</sequence>
</complexType>
<complexType name="ArrayOfWMP10Subscriberld">
<complexContent>
<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="ns11:WMP10Subscriberld[]"/>
</restriction>
</complexContent>
</complexType>
<complexType name="WMP10WapRequest">
<complexContent>
<extension base="ns11:WMP10MessagingRequest">
<sequence>
<element name="mediaType" nillable="true" type="string"/>
</sequence>
</extension>
</complexContent>
</complexType>
</schema>
</types>
<message name="sendSmsMessage0In">
<part name="clientld" type="xsd:string"/>
<part name="password" type="xsd:string"/>
<part name="request" type="ns11:WMP10SmsRequest"/>
</message>
<message name="sendSmsMessage0OOut">
<part name="Result" type="ns11:WMP10MessagingResponse"/>
</message>
<message name="sendWapMessagelln">
<part name="clientld" type="xsd:string"/>
<part name="password" type="xsd:string"/>
<part name="request" type="ns11:WMP10WapRequest"/>
</message>
<message name="sendWapMessagelOut">
<part name="Result" type="ns11:WMP10MessagingResponse"/>
</message>
<portType name="WMIMessaging">
<operation name="sendSmsMessage" parameterOrder="clientld password request">
<input name="sendSmsMessage0In" message="tns:sendSmsMessageOIn"/>
<output name="sendSmsMessage0Out" message="tns:sendSmsMessage0Out"/>
</operation>
<operation name="sendWapMessage" parameterOrder="clientld password request">
<input name="sendWapMessagelln" message="tns:sendWapMessagelln"/>
<output name="sendWapMessagelOut" message="tns:sendWapMessagelOut"/>
</operation>
</portType>
<binding name="WMIMessaging" type="tns:WMIMessaging">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="sendSmsMessage">
<soap:operation soapAction="sendSmsMessage" style="rpc"/>
<input name="sendSmsMessageOIn">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.messaging.WMIMessagingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<finput>
<output name="sendSmsMessage0Out">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.messaging.WMIMessagingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
<operation name="sendWapMessage">
<soap:operation soapAction="sendWapMessage" style="rpc"/>
<input name="sendWapMessagelln">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.messaging.WMIMessagingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<finput>
<output name="sendWapMessagelOut">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.messaging.WMIMessagingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 39

Interface Control Document

</binding>

<service name="WMIMessagingService">
<documentation>Wireless Messaging Interface WebService</documentation>
<port name="WMIMessaging" binding="tns:WMIMessaging">

<soap:address location="http://trinity.swed.openwavecorp.com:8080/locationstudio/webservices/messaging"/>

</port>

</service>

</definitions>

11.3 Event Billing

<?xml version="1.0" encoding="UTF-8"?>
<l--generated by GLUE on Thu Aug 08 14:34:27 CEST 2002-->
<definitions name="WBIBillingService" targetNamespace="http://www.openwave.com/wsdl/WBIBillingService/"
xmins:tns="http://www.openwave.com/wsdl/WBIBillingService/" xmIns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:http="http://schemas.xmlsoap.org/wsdl/http/" xmIns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmIns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmIns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tme="http://www.openwave.com/" xmins:ns11="http://mww.openwave.com/package/com.openwavecorp.Ist.client/">
<types>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema" targetNamespace="http://www.openwave.com/package/com.openwavecorp.lst.client/">
<complexType name="WBP10BillingResponse">
<complexContent>
<extension base="ns11:Response"/>
</complexContent>
</complexType>
<complexType name="Response">
<sequence>
<element name="responseCode" type="int"/>
<element name="responseDetail" nillable="true" type="string"/>
</sequence>
</complexType>
<complexType name="WBP10BillingRequest">
<sequence>
<element name="eventld" nillable="true" type="string"/>
<element name="subscriber" nillable="true" type="ns11:WBP10Subscriberld"/>
<element name="startTime" nillable="true" type="dateTime"/>
<element name="endTime" nillable="true" type="dateTime"/>
<element name="trackingld" nillable="true" type="string"/>
</sequence>
</complexType>
<complexType name="WBP10Subscriberld">
<complexContent>
<extension base="ns11:Subscriberld"/>
</complexContent>
</complexType>
<complexType name="Subscriberld">
<sequence>
<element name="id" nillable="true" type="string"/>
<element name="type" nillable="true" type="string"/>
</sequence>
</complexType>
</schema>
</types>
<message name="sendEvent0In">
<part name="clientID" type="xsd:string"/>
<part name="password" type="xsd:string"/>
<part name="wbpRequest" type="ns11:WBP10BillingRequest"/>
</message>
<message name="sendEventOOut">
<part name="Result" type="ns11:WBP10BillingResponse"/>
</message>
<portType name="WBIBilling">
<operation name="sendEvent" parameterOrder="clientID password wbpRequest">
<input name="sendEvent0In" message="tns:sendEvent0In"/>
<output name="sendEvent0Out" message="tns:sendEventOOut"/>
</operation>
</portType>
<binding name="WBIBilling" type="tns:WBIBilling">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="sendEvent">
<soap:operation soapAction="sendEvent" style="rpc"/>
<input name="sendEvent0In">
<soap:body use="encoded" namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.billing. WBIBillingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<[input>
<output name="sendEventOOut">
<soap:body use="encoded" namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.billing. WBIBillingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
</binding>
<service name="WBIBillingService">
<documentation>Wireless Billing Interface WebService</documentation>

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 40

Interface Control Document

<port name="WBIBilling" binding="tns:WBIBilling">
<soap:address location="http://trinity.swed.openwavecorp.com:8080/locationstudio/webservices/billing"/>
</port>
</service>

</definitions>

11.4 Location

<?xml version="1.0" encoding="UTF-8"?>
<l--generated by GLUE on Thu Jun 27 14:52:18 CEST 2002-->
<definitions name="WLILocationService" targetNamespace="http://www.themindelectric.com/wsdl/WLILocationService/"
xmins:tns="http://www.themindelectric.com/wsdl/WLILocationService/" xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:http="http://schemas.xmlsoap.org/wsdl/http/* xmIns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmIns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmIns="http://schemas.xmlsoap.org/wsdI/"
xmlns:tme="http://www.themindelectric.com/" xmIns:ns11="http://www.themindelectric.com/package/com.openwavecorp.Ist.client/">
<types>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema" targetNamespace="http://www.themindelectric.com/package/com.openwavecorp.Ist.client/">
<complexType name="MLP300LocationResponse">
<sequence>
<element name="addInfo" nillable="true" type="string"/>
<element name="result" nillable="true" type="string"/>
<element name="resld" nillable="true" type="string"/>
<element name="mLP300Positions" nillable="true" type="ns11:ArrayOfMLP300Position"/>
</sequence>
</complexType>
<complexType name="MLP300Position">
<sequence>
<element name="time" nillable="true" type="string"/>
<element name="x" nillable="true" type="string"/>
<element name="y" nillable="true" type="string"/>
<element name="z" nillable="true" type="string"/>
<element name="radius" nillable="true" type="string"/>
<element name="altAcc" nillable="true" type="string"/>
<element name="alt" nillable="true" type="string"/>
<element name="speed" nillable="true" type="string"/>
<element name="direction" nillable="true" type="string"/>
<element name="result" nillable="true" type="string"/>
<element name="resld" nillable="true" type="string"/>
<element name="utcOff" nillable="true" type="string"/>
<element name="levConf" nillable="true" type="string"/>
<element name="addInfo" nillable="true" type="string"/>
<element name="mLP300Msid" nillable="true" type="ns11:MLP300Msid"/>
</sequence>
</complexType>
<complexType name="ArrayOfMLP300Position">
<complexContent>
<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="ns11:MLP300Position[]"/>
</restriction>
</complexContent>
</complexType>
<complexType name="MLP300Msid">
<sequence>
<element name="msid" nillable="true" type="string"/>
<element name="msidType" nillable="true" type="string"/>
</sequence>
</complexType>
<complexType name="MLP300LocationRequest">
<sequence>
<element name="clientld" nillable="true" type="string"/>
<element name="clientPwd" nillable="true" type="string"/>
<element name="respReq" nillable="true" type="string"/>
<element name="respTimer" nillable="true" type="string"/>
<element name="llAcc" type="int"/>
<element name="horAcc" type="int"/>
<element name="altAcc" type="int"/>
<element name="maxLocAge" type="int"/>
<element name="locType" nillable="true" type="string"/>
<element name="prioType" nillable="true" type="string"/>
<element name="mLP300Msid" nillable="true" type="ns11:ArrayOfMLP300Msid"/>
</sequence>
</complexType>
<complexType name="ArrayOfMLP300Msid">
<complexContent>
<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="ns11:MLP300Msid[]"/>
</restriction>
</complexContent>
</complexType>
</schema>
</types>

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 41

Interface Control Document

<message name="getLocation0OIn">
<part name="mLP300LocationRequest" type="ns11:MLP300LocationRequest"/>
</message>
<message name="getLocationOOut">
<part name="Result" type="ns11:MLP300LocationResponse"/>
</message>
<portType name="WLILocationService">
<operation name="getLocation" parameterOrder="mLP300LocationRequest">
<input name="getLocation0In" message="tns:getLocation0OIn"/>
<output name="getLocation0Out" message="tns:getLocation0Out"/>
</operation>
</portType>
<binding name="WLILocationService" type="tns:WLILocationService">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getLocation">
<soap:operation soapAction="getLocation" style="rpc"/>
<input name="getLocation0In">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.location.WLILocationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<finput>
<output name="getLocation0Out">
<soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.location.WLILocationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>
</binding>
<service name="WLILocationService">
<documentation>com.openwavecorp.products.locationstudio.presentation.location.WLILocationService web service</documentation>
<port name="WLlILocationService" binding="tns:WLILocationService">
<soap:address location="http://192.168.12.136:8080/locationstudio/webservices/location"/>
</port>
</service>
</definitions>

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 42

