
 Location Studio - Interface Control Document

Advanced Application Interface Specification

System Version: Location Studio 2.0

Openwave Systems Inc.

Abstract
This document describes Openwave’s Advanced Application Interface. This interface allows for
the application to use Location Studio to perform location requests, messaging, record billing

events, and verify the subscriber.

 Document ID: Final Document Version: 1.7
 Document Status: Date: 13 January 2003

Openwave Systems
1400 Seaport Boulevard
Redwood City, CA 94063

USA

OPENWAVE PROPRIETARY AND CONFIDENTIAL

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 2

REVISION HISTORY

Version Level Date of
Issue

Remarks Revised By:

0.1 06/27/02 First Draft Richard Wong
0.2 07/17/02 Minor fixes, updated wap push class Richard Wong
0.3 07/29/02 Openwave formatting Richard Wong
0.4 08/08/02 Updated WSDL, minor fixes Richard Wong
0.5 08/19/02 Updated optional parameters, added

detail of format of return items
Richard Wong

0.6 09/02/02 Many changes and additions. WSDL
examples removed. Java examples
included.

Mats Cedervall

0.7 09/04/02 Update after review meeting Mats Cedervall
0.71 09/12/02 Some changes in 0.7 were missed

because of a WORD crash. These
changes are redone in 0.71

Mats Cedervall

1.3 10/24/02 Added error code information Rose Reynolds
1.4 11/15/02 Added getLocation default values Rose Reynolds
1.5 11/26/02 Added SMS and WAP Proxy info Rose Reynolds
1.6 01/10/03 10.1 added information that the

mapping of error codes are only done
when a simple location request is
made.

Per Hubinette

1.7 01/13/03 Added missing parameter ‘alt’ in
getLocation response

Mattias Arbin

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 3

TABLE OF CONTENTS

REVISION HISTORY .. 2

1 INTRODUCTION ... 5

1.1 Purpose of the Document... 5

1.2 Glossary of Terms .. 5

2 REFERENCES .. 7

3 SYSTEM OVERVIEW.. 8

3.1 Overall Architecture .. 8

4 SUBSCRIBER VERIFICATION AND VALIDATION.. 9

4.1 Typical Subscriber Verification and Validation Request/Response Sequences 9
4.1.1 Subscriber Verification... 9

4.1.1.1 Typical Call Flow.. 9
4.1.2 Subscriber Validation ... 10

4.1.2.1 Typical Call flow... 10

4.2 Interface Description.. 11
4.2.1 Authenticate client .. 11
4.2.2 Validate subscription .. 12
4.2.3 Initiate Verify Subscriber ... 12
4.2.4 Complete Verify Subscriber ... 13

5 MESSAGING ... 14

5.1 Typical Messaging Request/Response Sequences ... 14
5.1.1 Downstream SMS or WAP Example ... 14
5.1.2 Upstream SMS Proxy Example.. 15
5.1.3 Upstream WAP Proxy Example... 15
5.1.4 WAP Ask Example... 16

5.2 Interface Description.. 17
5.2.1 sendSmsMessage .. 17
5.2.2 sendWapMessage ... 18
5.2.3 WAP Proxy Format .. 19
5.2.4 SMS Proxy Format ... 20

6 EVENT BILLING ... 21

6.1 Typical Event Billing Request/Response Sequence .. 21

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 4

6.2 Interface Description.. 21
6.2.1 sendEvent.. 22

7 LOCATION REQUESTS... 23

7.1 LIF ... 23

7.2 Simple Location Request ... 23

7.3 Typical Location Request/Response Sequence.. 23

7.4 Interface Description.. 24
7.4.1 LIF based request.. 24

7.4.1.1 getLocation .. 24
7.4.2 Simple Location request ... 26

7.4.2.1 getLocation .. 26

8 APPLICATION NOTES... 28

8.1 Valid LSt ID Types... 28

8.2 Valid Media Types ... 28

8.3 WAP proxy.. 28

8.4 WAP Ask... 29

9 EXAMPLE REQUESTS AND RESPONSES ... 30

9.1 Pseudo example .. 30

9.2 Java example... 30

10 ERROR MESSAGES .. 32

10.1 Location Request Error Codes ... 33

11 WSDL... 36

11.1 Subscriber Validation .. 36

11.2 Messaging .. 38

11.3 Event Billing.. 40

11.4 Location... 41

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 5

1 INTRODUCTION

Openwave’s Location Studio provides the capability for applications to access the
functionality of the operator’s network without custom integration. This access is granted
through Openwave’s Advanced Application Interface (AAI). The AAI is implemented over
Web Services for the maximum flexibility and ease of implementation for developers.
The following functionality is available through the AAI:

Subscriber Validation - Location Studio provides a mechanism for LCS clients to validate
subscribers, subscriptions, and LCS client credentials. The subscriber validation also provides
clients with an alias to anonymously identify users.

Messaging - Location Studio provides SMS and WAP functionality for LCS clients. Location
Studio supports upstream and downstream messaging. Downstream messages are initiated by
the LCS client, sent to end user through Location Studio. Upstream messages are sent by end
users, proxied by Location Studio to LCS clients. Location Studio also supports a “WAP Ask”
functionality as well as privacy proxies.

Event Billing - Location Studio offers LCS clients the functionality to submit event billing records
to the operator.

Location - Location Studio offers LCS clients the functionality to request subscriber location over
the AAI interface. In Location Studio it is also possible to retrieve location via the XML-based LIF-
MLP 3.0 interface.

The WSDL files for the standard deployment of the AAI can be found at Openwave’s SDK
website or obtained directly from Openwave . The wireless operator may have slightly different
functionality available. Please contact your wireless operator for more information.

1.1 Purpose of the Document
This document is intended to assist developers understand Openwave’s Advanced Application
Interface.

1.2 Glossary of Terms

Table 1: Glossary of Terms

Term Definition
AAI Advanced Application Interface
DTD Document Type Definition
GMLC Gateway Mobile Location Center
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
LCS Location Services
LSt Location Studio

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 6

Term Definition
MPC Mobile Positioning Center
MS Mobile Station
MSID Mobile Station Identifier
SMSC Short Message Service Center
SSL Secure Socket Layer
TLS Transport Layer Security
URL Uniform Resource Locator
XML Extensible Markup Language

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 7

2 REFERENCES

[1] Openwave, “Implementing Web Services in LocationStudio” Version 1.1, March 2002.
[2] W3C website on WSDL, http://www.w3.org/TR/wsdl
[3] LIF, “Mobile Location Protocol Specification Version 3.0.0”, June 3, 2002.
[4] Openwave, “LIF MLP 3.0.0 Interface Statement of Compliance.” which can be found at Error!

Reference source not found.

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 8

3 SYSTEM OVERVIEW

3.1 Overall Architecture
A sample location service architecture is shown in Figure 1.

LCS Client - a software and/or hardware entity that interacts with a LCS Server for the purpose
of obtaining location information for one or more Mobile Stations.

Location Studio – LSt is a gateway into the operator’s network to securely and easily obtain
subscriber location data. . LSt provides abstraction from the underlying location infrastructure.

GMLC/MPC – The Gateway Mobile Location Center (GSM networks) or the Mobile Positioning
Center (CDMA networks) provides location information from the operator’s network.

SMSC – The Short Message Service Center is the gateway to sending short messages to mobile
subscribers.

WAP GW – The WAP gateway is used by Location Studio to send WAP push messages to
subscribers.

Billing System – The billing systems of the operator collects billing information and produces
billing statements to subscribers and/or clients.

Internet

LCS Client

Location Studio

AAI

GMLC/MPC

Operator Network

Radio tower

SMSC

Billing System

WAPGW

Figure 1 Sample Location Service Architecture

The AAI is implemented using Web Services. Web Services is platform and programming
language independent way to expose some business functionality over the Internet using the
SOAP protocol. For more information on Web Services see Implementing Web Services in
LocationStudio [1] or the World Wide Web Consortium’s website on WSDL[2].

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 9

4 SUBSCRIBER VERIFICATION AND VALIDATION
The verification and validation feature in Location Studio’s AAI provides a mechanism for
subscribers to remain anonymous and for LCS clients to validate subscribers, subscriptions, and
LCS client credentials. The LCS clients can make use of this interface to:

• Validate that an end-user is still a customer of the operator
• Validate that the end-user is authorized by the operator to access their service
• Validate that the end-user has adequate credit remaining in his/her pre-paid account
• Verify that an end-user registering for a service using an internet browser is in

possession of the Mobile Station he/she registers (identity verification loop using SMS pin
code)

• Receive a persistent alias that may be used to identify the mobile station in subsequent
transactions (location, messaging, billing, toolkit services) with Location Studio while
maintaining privacy and anonymity.

The advantages of using these features are that:
• Only requests from valid subscribers with established billing relationship are serviced.
• It provides support for anonymity and privacy for internet-based community and gaming

services
• No network resources are consumed (e.g. location attempt) if the subscriber validation is

negative.

4.1 Typical Subscriber Verification and Validation Request/Response Sequences

4.1.1 Subscriber Verification
The subscriber verification feature of the AAI was designed to solve 2 problems:

1. If a user signs up for a service, the client can verify that the user is in possession of the
handset that they claims to have. This is designed to prevent malicious or inadvertent
use of a service.

2. If the user wants to remain anonymous to the Client, a persistent anonymous ID can be
generated and assigned to the subscriber by Location Studio. The Client will not know
who the user is and must always go through LSt to interact with the subscriber.
Personalization on the client site by the subscriber can be maintained as the alias is
persistent.

4.1.1.1 Typical Call Flow

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 10

SMS
Gateway

Location
StudioClient

1

 3

5
 4

2

9

7

1. The end user registers with the application via SMS
2. The LCS client sends “initiateVerifySubscriber” to LSt
3. Location Studio sends a code to the end user via SMS
4. Location Studio returns a registration alias to the LCS client as the response to the

“initiateVerifySubscriber” call.
5. The end user enters the code to the LCS client
6. The LCS client sends “completeVerifySubscriber” with the code and the verification ID to

Location Studio
7. Location Studio returns a persistent alias that the LCS client can use in subsequent

location requests to Location Studio for that end user

In the preceding example, the end user could have also registered with the client through the
wired internet from a computer. In that specific case, everything except for the first step, which is
done directly to the client through a web page, remains the same.

4.1.2 Subscriber Validation

The Subscriber Validation allows the Client to validate the subscriber against a number of checks
in Location Studio’s and/or the operator’s databases. This can be useful to validate subscription
to a service or if there a sufficient funds to complete a transaction.

4.1.2.1 Typical Call flow

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 11

SMS
Gateway

Location
StudioClient

1

 3

5
 4

2

9

Operator
Database
(optional)

1. The end user invokes a function in the LCS client
2. The LCS client sends “validateSubscription” to LSt. Location Studio can check the

internal database to verify the subscriber is authorized by the operator to use this client.
If desired, the operator may specify an external database for this lookup as illustrated in
the optional steps 3 and 4.

3. OPTIONAL. Location Studio queries the operator billing system (or some other data
depending on the context of the client) to check if the user is allowed by the operator to
use the service.

4. OPTIONAL The billing system returns that the user in not allowed to use the service.
5. Location Studio returns to the LCS client “Not_Subscriber”.
6. The LCS client returns an error message to the end user

4.2 Interface Description

The subscriber validation feature has several methods available for use. These are:

Operation Description
authenticateClient See Section 4.2.1
validateSubscription See Section 4.2.2
initiateVerifySubscriber See Section 4.2.3
completeVerifySubscriber See Section 4.2.4

4.2.1 Authenticate client

Name authenticateClient
Description This method is used by LCS clients to validate their user names and

passwords.
Mandatory
Parameters

clientID String Identifying the LCS client
password String that authenticates the LCS client

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 12

Optional
Parameters

none

Return Value Response Code Integer value that maps to a response. See section
10

Response Detail String with optional additional text information about
the response

4.2.2 Validate subscription

Name validateSubscription
Description This interface is used by LCS clients to validate the subscriber against some

database. The validation that occurs will be based on the context of client
submitting the request.

Parameters clientID Identifies the LCS client
password Authenticates the LCS client
subscriber An object that consists of strinSubscriber ID and

string ID Type. For a list of valid ID types see
section 8.1.

Optional
Parameters

none

Return Values Response Code Integer value that maps to a response. See section
10

Response Detail String with optional additional text information about
the response

OperatorName String. The name of the operator who has the
subscription. For single operator deployments this
will always be the same.

transferredDate Date type. The date the subscription was
transferred. This is returned if the subscription has
been transferred to another person.

4.2.3 Initiate Verify Subscriber

Name initiateVerifySubscriber
Description This is the first step in verifying a subscriber. The client uses this method to

receive a registration ID and to get LSt to send a PIN to the user. The
registration ID and the PIN must be returned to LSt when using “complete
verify subscriber”.

Mandatory
Parameters

clientID String. Identifies the LCS client
password String. Authenticates the LCS client
subscriberID Subscriber ID object that contains two Strings, Type

and Identification, defining the subscriber. Valid
types are phone number and operator aliases. For a
description of the alias types see section 8.1.

message String.The message that is sent to the end user
together with the pin code. The maximum length of
this message is configurable by the operator. The

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 13

default maximum is 160 characters.

Optional
Parameters

codeSignature String. Place holder for where the pin code should
be inserted in the message. If not specified the
default value is %CODE%. This means e.g. that the
text %CODE% in message will be replaced by a
code (PIN) generated by Location studio.

messageDelimiter String. If the message must be split in to many
messages, the delimiter specifies where they may
be split. If not specified the default value is NULL

Return Values Response Code Integer value that maps to a response. See section
10

Response Detail String. Optional additional text information about the
response”

verificationAlias String. Unique id for this verification

4.2.4 Complete Verify Subscriber

Name completeVerifySubscriber
Description This interface is used by LCS clients to complete the verification of

subscribers. Upon submission of a valid PIN and registration ID, the client will
be returned a persistent alias

Mandatory
Parameters

clientID String. Identifies the LCS client
password String. Authenticates the LCS client
verificationAlias String. Unique id for this verification
code String. Code the end user has received from

Location Studio
Optional
Parameters

None

Return Values Response Code Integer value that maps to a response. See section
10

Response Detail String. Optional additional text information about the
response”

subscriberID Subscriber ID object that contains two Strings, Type
and Identification, defining the subscriber. Valid
types are phone number and operator aliases. For
this method the Type will always be “PSID”
(Persistent Subscriber ID).

.

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 14

5 MESSAGING
The Wireless Messaging feature in Location Studio’s AAI provides messaging functionality for
third-party LCS clients. Wireless messages in this case are either SMS or WAP-push.
The feature supports both upstream and downstream messaging between Clients (applications)
and subscribers. Down-stream messages are defined as those initiated by the Client and sent to
one or more mobile stations through Location Studio. Upstream messages are originated my
mobile subscribers and ‘tunneled’ through Location Studio to LCS clients.
Advantages of using the Messaging part of the Location Studio AAI include:

• The LCS Client is sheltered from having to support every underlying SMSC protocol (LSt
supports SMPP, UCP and CIMD2),

• LSt ID protection services (subscriber alias) can be used for anonymity and privacy
• Message Transaction Detail Records provide auditing and accounting functions

The messaging feature of LSt also encompasses “WAP ask” functionality as well as WAP and
SMS privacy proxies. WAP Ask allows the subscriber to have LSt ask for permission to release
location to the Client. The privacy proxies provide:

• Replacement of phone number or WAP gateway generated identifier with Location
Studio-generated subscriber identifiers (TSID/PSID). The TSID/PSID may be used by the
application on all LSt external interfaces.

• TSID/PSID identifiers enable anonymity (application does know subscriber identity or
phone number). The PSID is persistent from connection to connection and can provide
Personalization and automatic Sign-on capabilities.

5.1 Typical Messaging Request/Response Sequences

5.1.1 Downstream SMS or WAP Example

The following call flow is from an example “Friend Finder” application. A user wants to send an
SMS or WAP message to all nearby friends by using that feature in a friend finder application.

SMSCClient Location
Studio

1

3
4

2

User

1. The end user requests that the client sends a message to the nearby friends.
2. The client issues a “sendSmsMessage” or “sendWapMessage” to LSt with the list of

recipients (any valid LSt identifier is acceptable. See section 8.1) and the message to be
sent.

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 15

3. LSt sends the messages to the SMSC or WAP GW and the SMSC or WAP GW sends
the messages to the users.

4. LSt sends a response code back to the client.

5.1.2 Upstream SMS Proxy Example

Upstream communications do not use the AAI directly, but are discussed here for completeness.
Upstream SMS communications use Location Studio’s SMS Proxy. Use of the SMS proxy
requires the use of specially formed LSt URLs to replace the standard client URLs in order to
have the session proxied by LSt. A description of the construction of these URLs can be found in
section 5.2.4. The following call flow is from an example “Where am I?” application where privacy
is required. In this example application, the end user initiates the transaction by sending an SMS
asking for their current location.

SMSC Content
Provider

Location
Studio

Location
Server

1

 4
59

 3
2

1. The end user sends the word “where” to the carrier’s SMS-C and the SMS-C forwards
the message to the Location Studio SMS Proxy. The proxy forwards the message to the
LCS client after replacing the MSISDN with a TSID or PSID generated by LSt. The
format of these messages is described in section 5.2.4.

2. The LCS client requests location for that user.
3. LSt checks the authentication and authorization of the request and if successful, sends a

location request to Location Manager.
4. Location Manager responds with the location.
5. LSt returns the location to the client as requested.
6. The LCS client sends the response to the end user through Location Studio.

5.1.3 Upstream WAP Proxy Example

Upstream communications do not use the AAI directly, but are discussed here for completeness.
Upstream WAP communications use Location Studio’s WAP Proxy. Use of the WAP proxy
requires the use of specially formed LSt URLs to replace the standard client URLs in order to
have the session proxied by LSt. A description of the construction of these URLs can be found in
section 5.2.3. The following call flow is from an example location content service where privacy is
required. In this example application, the end user initiates the transaction by sending a WAP
request for some location content.

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 16

WAP
Gateway

Content
Provider

Location
Studio

Location
Server

1

5

2

7
 6

Home
Server

9

3
4

8

1. User connects to their homepage
2. Some location service link is served to the user.
3. The end user selects a location service that is proxied through LSt. The message is sent

to Location Studio. Location Studio forwards the message to the LCS client after
replacing the MSISDN or WAP identifier with a TSID or PSID generated by LSt. The
format of these messages is described in section 5.2.3.

4. The client requests location for that user.
5. LSt checks the authentication and authorization of the request and if successful, sends a

location request to Location Manager.
6. LM responds with the location.
7. LSt returns the location to the client as requested.
8. The LCS client sends the response to the end user through Location Studio.
9. Links on the response page that are not location sensitive are linked directly to the target.

5.1.4 WAP Ask Example

WAP ask is invoked when the subscriber has set their permissions to “Ask”. When a location request is
received in such a case, a WAP push is sent to the subscriber requesting permission to release the
location information. If the user says yes, the information is sent back to the client. For more information
on WAP ask see section 8.4.

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 17

WAP
Gateway

Content
Provider

Location
Studio

Location
Manager

1
2

 3
4

 5
6

7

9
8

10

1. A passive location request is made for the location of a subscriber.

2. The Client makes a location request to LSt. LSt checks the subscriber profile and finds that the

subscriber has set the permission to “ask”.
3. LSt issues a WAP push/UP notification to the gateway. The gateway issues an alert to the

subscriber
4. The subscriber chooses to view the alert and is linked to the alert URL.
5. LSt serves up the “Ask” deck.
6. The subscriber responds with an allow location request.
7. LSt requests location from LM
8. LSt receives location from LM
9. LSt returns location to the client
10. Client returns content to the subscriber.

5.2 Interface Description

5.2.1 sendSmsMessage

Name sendSmsMessage
Description Send an SMS message to the subscriber.
Mandatory
Parameters

clientID String. identifies the LCS client
password String. Authenticates the LCS client
body String. The actual message being sent. The

maximum length of this message is configurable by
the operator. If the body length exceeds the
maximum allowed by the operator the message will
be truncated. The default maximum is 160
characters.

recipients Subscriber ID object. One or more recipients as end
user identifiers. Valid end user identifiers are defined
in section 8.1. The maximum number of recipients is
25.

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 18

Optional
Parameters

delimiter String. If the message must be split in to many
messages, the delimiter specifies where they may
be split. The length of the delimeter string must be
equal to one.

Return Values If more than one recipient was selected, the return response will have an
array of responses with each of the subscribers having a reponse..

Response Code Integer value that maps to a response. See section

10
Response Detail String. Optional additional text information about the

response
Subscriber Subscriber ID object. Type and Identification of the

subscriber. Valid types are phone number and
operator aliases. For a description of the alias types
see section 8.1.

5.2.2 sendWapMessage

Name sendWapMessage
Description Send a WAP message to the subscriber.
Mandatory
Parameters

clientID String. Identifies the LCS client
password String. Authenticates the LCS client
body String. The actual message being sent. The

maximum length of this message is configurable by
the operator. If the body length exceeds the
maximum allowed by the operator the message will
be truncated. The default maximum is 160
characters.

mediaType The WAP media type. See section 8.2 for details
recipients Subscriber ID object. One or more subscribers as

end user identifiers. Valid end user identifiers are
defined in section 8.1. The maximum number of
recipients is 25.

Optional
Parameters

none

Return Values If more than one recipient was selected, the return response will have an
array of responses with each of the subscribers having a reponse.

Response Code Integer value that maps to a response. See section

10
Response Detail String. Optional additional text information about the

response
Subscriber Subscriber ID object. Type and Identification of the

subscriber. Valid types are phone number and
operator aliases. For a description of the alias types
see section 8.1

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 19

5.2.3 WAP Proxy Format
This section describes the format of the WAP proxy URLs. For context and more information, see the
“Upstream WAP Proxy” call flow in section 5.1.3.
In step 3 of the example call flow, the end user initiates a transaction by selecting a location service that
is proxied through LSt. In order for the user’s request to be proxied by LSt, the URL must be in the
following format:

http://<LSt host name>/<Proxy Path>/<Original path>/<SMS Bnumber><Original CGI
parameters>[&<MSISDN|WAP ID parameter|other resolvable ID>]

where

• < LSt host name> is the host name of LSt,
• <Proxy Path> is the path to the LSt Wap Proxy,
• < Original path> is the original path of the taret URL,
• < SMS Bnumber> is the B number of the LCS client when it is used with SMS. This number is

used also in the WAP case to identify the LCS client original CGI parameters,
• < Original CGI parameters> are any CGI parameters needed by the user’s request and
• < MSISDN|WAP ID parameter|other resolvable ID> uniquely identifies the subscriber. This part is

added by the WAP Gateway, which means that the URL without the […] part is the format of the
link selected by the end user. The inclusions of the MSISDN will be different for different WAP
gateways. Some gateways will include the Wap ID and some will put the id in the header rather
than in the URL. Location Studio handles all cases by professional services adaptation of its
Wap Proxy.

For example, here is an example of the URL for a message between the WAP gateway and the LSt
proxy:
http://lst_wap_proxy.operator.com/locationstudio/wapproxy/dialog/start/4477?action=12345&MSISDN=46
733201025

The LSt proxy forwards all incoming messages to an LCS client. The LSt proxy looks up the client and its
corresponding Post URL field using the SMS BNumber part of the incoming URL and replaces the
MSISDN parameter with a TSID, PSID or OSID depending on configuration parameters in the client
profile.
The message send by the LSt proxy to the LCS client will be in the following format:

http://<LCSClientPostURL>/<OriginalPath><OriginalCGIParameters>&TSID|PSID|OSID=<string>[TSID|P
SID=<string>]

where

• <LCSClientPostURL> is the post URL found in the SMS BNumber look up,
• <OriginalPath> is the path found in the incoming message,
• <OriginalCGIParameters> are the CGI parameters found in the incoming message and
• <string> is the TSID, PSID or OSID associated with the incoming MSISDN.

This is the format in which the LCS client should expect to receive messages from the LSt WAP Proxy.
For example, if the LCD client application is FriendFinder at the operator M2, the outgoing URL may be:

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 20

http://wap.M2ff.com/dialog/start?action=12345&PSID=7656754215342364536253&TSID=1a2e3a3456aa
c3

5.2.4 SMS Proxy Format

This section describes the format of the SMS proxy URLs. For context and more information, see the
“Upstream SMS Proxy” call flow in section 5.1.2.
In step 1 of the example call flow, the end user initiates a transaction by sending an SMS message to an
LCS client that is proxied through LSt. The SMS proxy feature requires that LSt proxy all SMS traffic to
and from the specified LCS client. The LSt SMS proxy will forward all incoming requests to the LCS
client, translating MIN or MSISDN to a TSID or PSID for each transaction.
The URL posted to the LCS client application has the following format:

http://<LCSClientPostURL>?TSID|PSID|OSID=<digits>&message=<SMS sent by user>

where

• <LCSClientPostURL> is the post URL of the LCS client application,
• <digits> is the TSID, PSID or OSID associated with the MIN or MSISDN of the incoming SMS

message and
• <SMS sent by user> is the SMS message from the incoming message.

This is the format in which the LCS client should expect to receive messages from the LSt SMS Proxy.
For example, if the LCD client application is FriendFinder at the operator M2, the outgoing URL may be:

http://sms.M2ff.com?PSID=7656754215342364536253&message=”Where”

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 21

6 EVENT BILLING
The Wireless Billing feature in Location Studio’s AAI provides LCS clients the functionality to
submit application/event-level billing records.
Billing events submitted through this interface convey consolidated macro-transactions that result
from an action that is billable to the end subscriber using the service. For example, a billing event
may be submitted by a yellow-pages application provider for a “premium content search” resulting
in a single billing entry on the subscriber’s account. However, in order to complete that single
billable event there may have been multiple underlying micro-transactions required to complete
the request – one or more location requests, one or more geo-coding events, a map rendered,
turn-by-turn directions, etc. These micro-events are consolidated into one macro billing event.
Advantages of using the WBP include:

• Service-level billing events allow integration with the operator billing system so that
transactions are charged directly on the subscriber’s monthly bill, or debited from pre-pay
accounts.

• Facilitates revenue sharing and Bill-On-Behalf-Of relationships between operators and
application providers.

• Supports correlation of micro-transactions with the service billable macro-transaction for
better understanding of cost-of-delivery.

• No need to custom integration to the operator’s billing system.

6.1 Typical Event Billing Request/Response Sequence
Typically the LCS client and the carrier that hosts a Location Studio have defined the possible
billing events that particular LCS client may generate. Each billing event is assigned an id, unique
for that LCS client, and provisioned in Location Studio.
The actual end user actions behind each event are agreed to by the LCS client provider and the
carrier. The LCS client is responsible for keeping track of when these actions occur (consolidating
micro events if necessary) and submitting billing events to Location Studio.

Client Location
Studio

1

3
2

1. User requests some billable action from the client
2. Client issues “sendEvent” to LSt.
3. LSt returns “OK”

6.2 Interface Description

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 22

6.2.1 sendEvent

Name sendEvent
Description Send a macro billing event to LSt for the operator to bill the subscriber.
Parameters clientID String. Identifies the LCS client

password String. Authenticates the LCS client
eventID String. Identifies what event that has occurred. This

value must be known by both the operator and the
client to identify and successfully bill the event.
Default maximum is 50 characters.

subscriber Subscriber ID object. Identifies the end user that will
be billed for this event. Valid end user identifiers are
defined in section 8.1.

startTime Date object. Time stamp when this event started.
The format of the time is YYYY/MM/DD
HH:mm:ss:zzz

endTime Date object. Time stamp when this event ended.
The format of the time is YYYY/MM/DD
HH:mm:ss:zzz

trackingID String. Identifier for other information that the LCS
client wishes to pass to the operator. Default
maximum is 50 characters.

Optional
Parameters

none

Return Values Response Code Integer value that maps to a response. See section
10

Response Detail String. Optional additional text information about the
response

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 23

7 LOCATION REQUESTS
Location Studio supports 3 types of location requests.

• One is XML over http and is based based on the Location Interoperability Forum (LIF)
recommendation, Mobile Location Protocol (MLP), as the standards based location
interface for third-party LCS clients. This protocol is standalone and not considered to be
part of the AAI. Please see the LIF MLP 3.0 statement of Compliance document for
further details.

• The second one is also based on the LIF MLP 3.0 standard, but it is adapted to web
services. This protocol is part of AAI.

The third one is a more streamlined request model with a subset of features available. This protocol is
based on LIF MLP, but all parameters that are foreseen to not being used so often are removed. For most
applications it will be sufficient to use this part of AAI.

7.1 LIF
The MLP specification is very extensive, and includes many parameters in anticipation of future
needs. As such, the complete specification is not implemented within Location Studio – only the
basic set of features required for today’s LBS applications (Standard Location Immediate
Service). Location Studio will maintain compliance with the relevant portions of the LIF MLP
specification as it is updated and ratified (currently MLP 3.0).

The LIF location requests may be made the standards compliant XML messages to LSt or with the WSDL
interface described in this section.

7.2 Simple Location Request
For those applications that only requires basic location information the simple location request
offers a streamlined, more efficient and simpler method of obtaining that information. This is
enough for most LCS clients.

7.3 Typical Location Request/Response Sequence
A typical request/response sequence for both the LIF and the Simple Location Request would
consist of a subscriber requesting some location based content from a client as in the following
example:

Client Location
Studio

1

3
2

4

1. User requests some location content from the client
2. Client issues “getLocation” to LSt.
3. LSt returns the location information to the client
4. Client returns location content to the user.

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 24

7.4 Interface Description
Although both request types are made with the same call, for clarity the descriptions are separated into 2
sections.

7.4.1 LIF based request

All of the parameters and return values are compliant with the LIF specification. For detailed
description on each of these values please refer back to the LIF specification version 3.0.0[3].
For detailed information on what LIF functionality are supported by LSt, please refer to the
Openwave LSt Interface Statement of Compliance for LIF MLP[4].

7.4.1.1 getLocation

Name getLocation
Description Get the location of up to 25 subscribers. For request with multiple

subscribers, Location Studio will attempt to retrieve all the locations and
return them in a single response. If all locations are not received by location
studio within the timeout period, only those locations that have been received
will be returned.

Mandatory
Parameters

clientID String. Identifies the LCS client
clientPwd String. Authenticates the LCS client
subscriber Subscriber ID object. Type and Identification of the

subscriber. Valid types are phone number and
operator aliases. For a description of the alias types
see section 8.1. One may submit multiple
subscribers in a single request for positioning.

Optional
Parameters

respReq String. This attribute represents response time
requirement. Values: NO_DELAY| LOW_DELAY|
DELAY_TOL

 Default: DELAY_TOL.
respTimer Integer. Defines a timer for the response time within

which the current location should be obtained and
returned to the LCS Client.

 Units: seconds
Default: 0

llAcc Integer. Longitude and latitude accuracy
 Units: seconds

Default: 0
horAcc Integer. Requested horizontal accuracy
 Units: meters

Default: 0
altAcc Integer. Accuracy of altitude
 Units: meters

Default: 0
maxLocAge Integer. This states the maximum allowable age in

seconds of a location sent as a response to a
location request

 Units: seconds
Default: 0

locType String. the type of location requested

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 25

 Values: LAST | CURRENT| CURRENT_OR_LAST
 Default: CURRENT
prioType String. Defines the priority of a location request
 Values: NORMAL | HIGH
 Default: NORMAL

Return Values addInfo String. A text string containing additional information
about a certain result

result String. A text string indicating the result. Location
Studio is compliant with the error messages outlined
in the LIF specification[3]

resid Integer. a numeric representation of a result
message. Location Studio is compliant with the
error IDs outlined in the LIF specification[3]

mLP300Positions[]
 time String. the time when the positioning was performed
 Format: yyyyMMddhhmmss
 x String. The first ordinate in a coordinate system
 Format: DD MM SS.SSSH
 y String. Second ordinate in a coordinate.system.

This is optional if it is a linear coordinate system
 Format: DD MM SS.SSSH
 z String. third ordinate in a coordinate.system. This is

optional if it is a 2D coordinate system
 Format: meters
 radius String. The uncertainty radius is the radius of the

uncertainty; this is the geodesic distance between
the arc and the position point..

 Units: meters
 altAcc String. Accuracy of altitude in meters
 Units: meters
 alt String. The altitude of the mobile station.
 Units: meters
 speed String. The speed of the MS
 Units: meters/second
 direction String. Specifies the direction that a positioned MS is

moving in
 Units: degrees
 result String. A text string indicating the result of an

individual positioning
 resId String. a numeric representation of a result message
 utcOff String. Specifies the UTC offset in hours and

minutes. Positive values indicate time zones east of
Greenwich

 levConf String. the probability in percent that the MS is
located in the position area that is returned

 addInfo String. A text string containing additional information

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 26

about a certain result
 subscriber MLP300Msid object. MLP ID Type and Identification

of the subscriber. Valid types are phone number
and operator aliases. For a description of the alias
types see section 8.1.

7.4.2 Simple Location request

7.4.2.1 getLocation

Name getLocation
Description Get the location of up to 25 subscribers. For request with multiple

subscribers, Location Studio will attempt to retrieve all the locations and
return them in a single response. If all locations are not received by location
studio within the timeout period, only those locations that have been received
will be returned.

Mandatory
Parameters

clientID String. Identifies the LCS client
password String. Authenticates the LCS client
Timeout Integer. Maximum time before a response must be

returned.
 Units: seconds
maxLocAge Integer. This states the maximum allowable age of a

location sent as a response to a location request
 Units: seconds
subscriber Subscriber ID object. Type and Identification of the

subscriber. Valid types are phone number and
operator aliases. For a description of the alias types
see section 8.1. One may submit multiple
subscribers in a single request for positioning.

Optional
Parameters

none

Return Values response Code Integer value that maps to a response. See section
10

response Detail String. Optional additional text information about the
response

WLP10Position[]
 response Code Integer value that maps to a response. See section

10
 response Detail String. Optional additional text information about the

response
 subscriber Subscriber ID object. Type and Identification of the

subscriber. Valid types are phone number and
operator aliases. For a description of the alias types
see section 8.1.

 latitude String. The latitude returned
 Format: DD MM SS.SSSH

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 27

 longitude String. The longitude returned
 Format: DD MM SS.SSSH
time String. the time when the positioning was performed
 Format: yyyyMMddhhmmss
radius String. radius of a circle of uncertainty
 Units: meters

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 28

8 APPLICATION NOTES

8.1 Valid LSt ID Types

Identifier Description LIF
Type(s)

AAI LSt
type

Example

Phone
number

Either Mobile Identification
Number (the mobile phone
number in a TIA based network)
or Mobile Station ISDN (An
MSISDN consists of a country
code, a national destination code
and a subscriber number.
MSISDNs are used in ETSI
based networks).

MIN,
MSISDN

MSID 13033811000

Operator
Alias

This is an alias defined by the
operator or other external
agency. These could be an login
ID, NAI, ESN, WAP ID, email
address, etc. Specific valid
operator aliases are defined by
the serving operator.

IMSI, IMEI,
OPE_ID

OSID 192383@
gateway.abc.com

Temporary
Alias

This is an alias assigned by LSt
for a finite period of time.

SESSID TSID 21654485

Persistent
Alias

This is an alias assigned by LSt
for an indeterminate period of
time.

ASID PSID 21654485

8.2 Valid Media Types

Location Studio passes through the media type to the WAP gateway. As a result, the LCS client must
ensure that both the target handset and the gateway support the proposed media type. The
recommended, and default, media type for messaging requests is Service indication (text/vnd.wap.si). For
definitions of valid media types please see the wap 2.0 specification.

8.3 WAP proxy

Since the WAP proxy passes CGI parameters in the URL, the LCS client must support the use of HTTP
GET to receive the proxied parameters.

The WAP proxy acts a means of verifying implicit permission of active location requests. An active
location request is one made by a subscriber to locate themselves. By using the WAP proxy in such a
request, LSt can confirm that it is an active request and grant location without having to use WAP ASK.
WAP Ask is used to request permission in a passive scenario.

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 29

8.4 WAP Ask

The WAP ask feature allows the subscriber to have control of the location information without necessarily
having a formal permission relationship with the client. This feature is only relevant for passive location
requests. A passive request is made by a third party, requesting the location of a particular subscriber.
Active location requests, those made by the subscriber to locate themselves, have implicit authorization
and are handled by the WAP proxy feature to ensure that it is an active request.

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 30

9 EXAMPLE REQUESTS AND RESPONSES

9.1 Pseudo example
Pseudo code for fetching a persistent alias that may be used in subsequent requests to LSt:

initRequest = new WVP10InitRequest(new SubscriberId("MSID", "46730511400"), "Please reply to this
message with %CODE% to become a member of FriendFinder.", "%CODE%");
initResponse = wviValidation.initiateVerifySubscriber("theasp", "thepwd", initRequest);
if (initResponse.getStatus().equals("ok"))
{
 validationSubscriberId = initResponse.getVsid();
}
completionRequest = new WVP10CompletionRequest(validationSubscriberId, "1234");
completionResponse = wviValidation.completeVerifySubscriber("theasp", "thepwd", completionRequest);
if (completionResponse.getStatus().equals("ok"))
{
 persistentSubscriberId = completionResponse.getPsid();
}

9.2 Java example
The following Simple AAI demo in JAVA authenticates a client, validates a subscriber and then sends an
SMS message to the subscriber.

import com.openwavecorp.lst.client.*;
import electric.registry.Registry;
import electric.util.Context;

/**
 * Simple AAI demo. Authenticates a client, validates a subscriber and
 * then sends an SMS message to the subscriber.
 */
public class LStClientDemo {

 public static final void main(String [] args) {
 try {
 // Web service URL
 String url =
"http://localhost:8080/locationstudio/webservices/aai.wsdl";

 String clientId = "theasp";
 String clientPwd = "thepwd";

 // Create a subscriber
 SubscriberId subscriber = new SubscriberId();
 subscriber.setType("MSID");
 subscriber.setId("3033813000");

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 31

 // Bind to validation service
 WVIValidation validation = (WVIValidation)Registry.bind(url,
WVIValidation.class);

 // Authenticate client
 WVP10AuthenticationResponse authResp =
validation.authenticateClient(clientId, clientPwd);
 if(authResp.getResponseCode()!=Constants.OK) {
 throw new Exception("Client authentication failed:
"+authResp.getResponseCode()+","+authResp.getResponseDetail());
 }

 // Validate subscriber
 WVP10ValidationResponse valResp =
validation.validateSubscription(clientId,clientPwd,subscriber);
 if(authResp.getResponseCode()!=Constants.OK) {
 throw new Exception("Subscriber validation failed:
"+valResp.getResponseCode()+","+valResp.getResponseDetail());
 }

 // Bind to messaging service
 WMIMessaging messaging = (WMIMessaging)Registry.bind(url,
WMIMessaging.class);

 // Send an SMS message to the subscriber
 WMP10SmsRequest smsRequest = new WMP10SmsRequest("Hello
subscriber",subscriber);
 WMP10MessagingResponse msgResp =
messaging.sendSmsMessage(clientId,clientPwd,smsRequest);
 if(msgResp.getResponseCode()!=Constants.OK) {
 throw new Exception("Sending SMS failed:
"+msgResp.getResponseCode()+","+msgResp.getResponseDetail());
 }
 System.out.println("Message sent");

 }
 catch(electric.util.WrappedException e) {
 e.getException().printStackTrace();
 e.printStackTrace();
 }
 catch(Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }
}

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 32

10 ERROR MESSAGES

Result ID Message Description
-1 UNDEFINED Undefined state
0 OK Indicates that an action was successful
10 SYSTEM_FAILURE A server side system failure occurred
100 CLIENT_AUTHENTICATION_FAI

LED
Indicates that the provided client does is not authorized
to perform the requested action: Value = 100

101 INCORRECT_PASSWORD The password provided is incorrect
102 INVALID_ARGUMENT an argument passed to one of the methods of an

interface was either out of range, null when null is not
allowed, etc

300 CLIENT_NOT_FOUND The provided client was not found
301 CLIENT_NOT_ENABLED The client is not enabled.
310 SUBSCRIBER_NOT_FOUND The provided subscriber was not found
311 INVALID_SUBSCRIBER_ID An illegal subscriber type or subscriber id was provided
312 UNSUPPORTED_SUBSCRIBER

_TYPE
Some operations only support some subscriber types
(MSID, PSID, TSID etc), this code indicates that
requested action does not support the provided
subscriber type

313 MASTER_PRIVACY_DENY_ALL The request failed because master privacy was
enabled for the subscriber.

314 OPERATOR_SERVICE_NOT_E
NABLED

The operator has disabled this client.

315 SUBSCRIBER_SERVICE_NOT_
ENABLED

The subscriber has disabled access for this client.

316 SUBSCRIBER_TYPE_NOT_ALL
OWED

The provided subscriber id type is not allowed.

3001 BILLING_NOT_AUTHORIZED Response code indicating that billing was not
authorized

3002 BILLING_DISABLED Response code indicating that billing is disabled
4001 FAILED_TO_SEND_SMS Indicates that the server failed to send the SMS

message

4002 SUBSCRIBER_ERRORS Indicates that errors occurred for one or more of the
provided subscribers

4003 MESSAGING_NOT_ALLOWED Response code indicating that messaging was not
allowed

4004 MESSGING_DISABLED Response code indicating that messaging is disabled
5000 WRONG_PIN Wrong PIN supplied
5001 INCORRECT_VERIFICATIONALI

AS
The verification alias supplied is not correct

5003 UNSUPPORTED_SUBSCRIBER
_TYPE

The subscriber type supplied is not allowed for the
method called

5004 PERMISSION_DOES_NOT_EXI A permission for this subscriber does not exists

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 33

ST
5005 PSID_ALREADY_EXISTS A PSID for this subscriber/client relation does already
5006 SUBSCRIBERSTATUS_INVALID

CHECK
The subscriberValidation failed

5007 SUBSCRIBERSTATUS_TRANSF
ERRED

The subscription has been transferred

5008 SUBSCRIBERSTATUS_NOFUN
DS

The subscription has no funds available

5009 SUBSCRIBERSTATUS_NOTSU
BSCRIBER

The subscription does not exists (or does not belong
the operator)

5010 SUBSCRIBERSTATUS_AUTHO
RIZATIONFAILED

The client is not authorized to perform this method

5011 VALIDATION_DISABLED Response code indicating that validation is disabled
6000 POSITION_METHOD_FAILURE Location server can not meet the request requirements
6001 CONGESTION_IN_LOCATION_

SERVER
Request can not be handled due to congestion in the
location server

6002 CONGESTION_IN_MOBILE_NE
TWORK

Request can not be handled due to congestion in the
mobile network

6003 ABSENT_SUBSCRIBER

The subscriber is currently not reachable

6004 TOO_MANY_POSITION_ITEMS Too many position items have been specified in the
request

6005 FORMAT_ERROR Request contained a format error
6006 SYNTAX_ERROR Request contained a syntax error
6010 INVALID_PROTOCOL_ELEMEN

T_VALUE
Request contained an invalid protocol element value

6011 INVALID_PROTOCOL_ELEMEN
T_ATTRIBUTE

Request contained an invalid protocol element attribute

6012 PROTOCOL_ELEMENT_VALUE
_NOT_SUPPORTED

Request contained an unsupported protocol element
value

6013 PROTOCOL_ELEMENT_ATTRIB
UTE_VALUE_NOT_SUPPORTE
D

Request contained an unsupported protocol element
value

6014 QOP_NOT_ATTAINABLE The requested Quality of Position could not be provided
6015 POSITIONING_NOT_ALLOWED Positioning not allowed
6016 DISALLOWED_BY_LOCAL_REG

ULATIONS
Positioning disallowed

6017 MISCONFIGURATION_OF_LOC
ATION_SERVER

Location server is not properly configured

6018 LOCATION_NOT_ALLOWED Location not allowed

10.1 Location Request Error Codes
Location Studio's compliance with the LIF MLP 3.0 specification includes compliance with the error codes
defined by that specification. As a result, both forms of the getLocation wsdl operation described in the
"Location Requests" section of this document return error codes that originated from LIF MLP error
codes. Specifically, if an error occurs while attempting to satisfy a getLocation request, Location Studio

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 34

returns a LIF MLP error code, which is then mapped to one of the above AAI error codes. AAI error
codes in the range 6000-6999 directly correspond to error codes defined in the LIF MLP specification.
However, some of the AAI error codes in the range 0-1000 are not compliant with the LIF MLP
specification and therefore cannot be returned by the getLocation requests. Note that the mapping is only
done when using the simple location request. If a MLP3.0 request is sent the LIF MLP error code will be
returned.

For example, the AAI includes an "INCORRECT_PASSWORD" error code but the LIF MLP specification
does not. All authorization failures in the LIF MLP specification are lumped into the LIF MLP
"UNAUTHORIZED APPLICATION" error code. Therefore, the getLocation request can never return an
"INCORRECT_PASSWORD" error code. However, the other AAI requests (billing, messaging and
validation requests) are not limited to the LIF MLP error codes and can therefore return more detailed
error codes defined by the AAI.
The following table shows the mapping from LIF MLP error codes to AAI error codes.

LIF MLP error code AAI error code
OK(0) OK(0)
SYSTEM_FAILURE(1) SYSTEM_FAILURE(10)
UNSPECIFIED_ERROR(2) UNDEFINED(-1)
UNAUTHORIZED_APPLICATION(3) CLIENT_AUTHENTICATION_FAILED(100)
UNKNOWN_SUBSCRIBER(4) SUBSCRIBER_NOT_FOUND(310)
ABSENT_SUBSCRIBER(5) ABSENT_SUBSCRIBER(6003)
POSITION_METHOD_FAILURE(6) POSITION_METHOD_FAILURE(6000)
CONGESTION_IN_LOCATION_SERVER(101) CONGESTION_IN_LOCATION_SERVER(6001)
CONGESTION_IN_MOBILE_NETWORK(102) CONGESTION_IN_MOBILE_NETWORK(6002)
TOO_MANY_POSITION_ITEMS(104) TOO_MANY_POSITION_ITEMS(6004)
FORMAT_ERROR(105) FORMAT_ERROR(6005)
SYNTAX_ERROR(106) SYNTAX_ERROR(6006)
INVALID_PROTOCOL_ELEMENT_VALUE(110) INVALID_PROTOCOL_ELEMENT_VALUE(6010)
INVALID_PROTOCOL_ELEMENT_ATTRIBUTE(111) INVALID_PROTOCOL_ELEMENT_ATTRIBUTE(6011)
PROTOCOL_ELEMENT_VALUE_NOT_SUPPORTED(112) PROTOCOL_ELEMENT_VALUE_NOT_SUPPORTED(6012)
PROTOCOL_ELEMENT_ATTRIBUTE_
VALUE_NOT_SUPPORTED(113)

PROTOCOL_ELEMENT_ATTRIBUTE_
VALUE_NOT_SUPPORTED(6013)

QOP_NOT_ATTAINABLE(201) QOP_NOT_ATTAINABLE(6014)
POSITIONING_NOT_ALLOWED(202) POSITIONING_NOT_ALLOWED(6015)
DISALLOWED_BY_LOCAL_REGULATIONS(204) DISALLOWED_BY_LOCAL_REGULATIONS(6016)
MISCONFIGURATION_OF_LOCATION_SERVER(207) MISCONFIGURATION_OF_LOCATION_SERVER(6017)

Note also that even though the LIF MLP request includes a list of subscribers, it does not include an error
code that indicates partial success. In other words, if the getLocation request failed for 1 or more
subscribers but succeeded for 1 or more other subscribers, there is no LIF MLP error code to indicate
such a condition. Therefore, the developer is responsible for looking at the result code for each and
every subscriber in the response list. Do not rely on the overall error code. It may say the request was
successful but that does not guarantee that the location of all subscribers is successfully returned.
If you are using the getLocation operation with LIF MLP arguments, then the response contains an array
of mLPPositions, one for each subscriber passed in the request. Each mLPPositions element contains
resId, result and addInfo elements that tell you whether the location request for the associated subcriber
was successful or not. Look at these elements for each subscriber individually. Do not rely on the overall
resId, result and addInfo elements.
If you are using the getLocation operation with simplified arguments, then the response contains an array
of WLP10Position, one for each subscriber passed in the request. Each WLP10Position element
contains reponseCode and responseDetail elements that tell you whether the location request for the

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 35

associated subcriber was successful or not. Look at these elements for each subscriber individually. Do
not rely on the overall responseCode and responseDetail elements.

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 36

11 WSDL

11.1 Subscriber Validation

<?xml version="1.0" encoding="UTF-8"?>
<!--generated by GLUE on Thu Aug 08 14:33:42 CEST 2002-->
<definitions name="WVIValidationService" targetNamespace="http://www.openwave.com/wsdl/WVIValidationService/"
xmlns:tns="http://www.openwave.com/wsdl/WVIValidationService/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tme="http://www.openwave.com/" xmlns:ns11="http://www.openwave.com/package/com.openwavecorp.lst.client/">
 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.openwave.com/package/com.openwavecorp.lst.client/">
 <complexType name="WVP10AuthenticationResponse">
 <complexContent>
 <extension base="ns11:Response"/>
 </complexContent>
 </complexType>
 <complexType name="Response">
 <sequence>
 <element name="responseCode" type="int"/>
 <element name="responseDetail" nillable="true" type="string"/>
 </sequence>
 </complexType>
 <complexType name="WVP10ValidationResponse">
 <complexContent>
 <extension base="ns11:Response">
 <sequence>
 <element name="transferredDate" nillable="true" type="dateTime"/>
 <element name="operatorName" nillable="true" type="string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="WVP10SubscriberId">
 <complexContent>
 <extension base="ns11:SubscriberId"/>
 </complexContent>
 </complexType>
 <complexType name="SubscriberId">
 <sequence>
 <element name="id" nillable="true" type="string"/>
 <element name="type" nillable="true" type="string"/>
 </sequence>
 </complexType>
 <complexType name="WVP10InitResponse">
 <complexContent>
 <extension base="ns11:Response">
 <sequence>
 <element name="verificationAlias" nillable="true" type="string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="WVP10InitRequest">
 <sequence>
 <element name="subscriber" nillable="true" type="ns11:WVP10SubscriberId"/>
 <element name="message" nillable="true" type="string"/>
 <element name="codeSignature" nillable="true" type="string"/>
 <element name="messageDelimiter" nillable="true" type="string"/>
 </sequence>
 </complexType>
 <complexType name="WVP10CompletionResponse">
 <complexContent>
 <extension base="ns11:Response">
 <sequence>
 <element name="subscriber" nillable="true" type="ns11:WVP10SubscriberId"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="WVP10CompletionRequest">
 <sequence>
 <element name="verificationAlias" nillable="true" type="string"/>
 <element name="code" nillable="true" type="string"/>
 </sequence>
 </complexType>
 </schema>

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 37

 </types>
 <message name="authenticateClient0In">
 <part name="clientID" type="xsd:string"/>
 <part name="password" type="xsd:string"/>
 </message>
 <message name="authenticateClient0Out">
 <part name="Result" type="ns11:WVP10AuthenticationResponse"/>
 </message>
 <message name="validateSubscription1In">
 <part name="clientID" type="xsd:string"/>
 <part name="password" type="xsd:string"/>
 <part name="subscriber" type="ns11:WVP10SubscriberId"/>
 </message>
 <message name="validateSubscription1Out">
 <part name="Result" type="ns11:WVP10ValidationResponse"/>
 </message>
 <message name="initiateVerifySubscriber2In">
 <part name="clientID" type="xsd:string"/>
 <part name="password" type="xsd:string"/>
 <part name="request" type="ns11:WVP10InitRequest"/>
 </message>
 <message name="initiateVerifySubscriber2Out">
 <part name="Result" type="ns11:WVP10InitResponse"/>
 </message>
 <message name="completeVerifySubscriber3In">
 <part name="clientID" type="xsd:string"/>
 <part name="password" type="xsd:string"/>
 <part name="request" type="ns11:WVP10CompletionRequest"/>
 </message>
 <message name="completeVerifySubscriber3Out">
 <part name="Result" type="ns11:WVP10CompletionResponse"/>
 </message>
 <portType name="WVIValidation">
 <operation name="authenticateClient" parameterOrder="clientID password">
 <input name="authenticateClient0In" message="tns:authenticateClient0In"/>
 <output name="authenticateClient0Out" message="tns:authenticateClient0Out"/>
 </operation>
 <operation name="validateSubscription" parameterOrder="clientID password subscriber">
 <input name="validateSubscription1In" message="tns:validateSubscription1In"/>
 <output name="validateSubscription1Out" message="tns:validateSubscription1Out"/>
 </operation>
 <operation name="initiateVerifySubscriber" parameterOrder="clientID password request">
 <input name="initiateVerifySubscriber2In" message="tns:initiateVerifySubscriber2In"/>
 <output name="initiateVerifySubscriber2Out" message="tns:initiateVerifySubscriber2Out"/>
 </operation>
 <operation name="completeVerifySubscriber" parameterOrder="clientID password request">
 <input name="completeVerifySubscriber3In" message="tns:completeVerifySubscriber3In"/>
 <output name="completeVerifySubscriber3Out" message="tns:completeVerifySubscriber3Out"/>
 </operation>
 </portType>
 <binding name="WVIValidation" type="tns:WVIValidation">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="authenticateClient">
 <soap:operation soapAction="authenticateClient" style="rpc"/>
 <input name="authenticateClient0In">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="authenticateClient0Out">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="validateSubscription">
 <soap:operation soapAction="validateSubscription" style="rpc"/>
 <input name="validateSubscription1In">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="validateSubscription1Out">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="initiateVerifySubscriber">
 <soap:operation soapAction="initiateVerifySubscriber" style="rpc"/>
 <input name="initiateVerifySubscriber2In">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="initiateVerifySubscriber2Out">

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 38

 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="completeVerifySubscriber">
 <soap:operation soapAction="completeVerifySubscriber" style="rpc"/>
 <input name="completeVerifySubscriber3In">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="completeVerifySubscriber3Out">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.validation.WVIValidationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
 <service name="WVIValidationService">
 <documentation>Wireless Validation Interface WebService</documentation>
 <port name="WVIValidation" binding="tns:WVIValidation">
 <soap:address location="http://trinity.swed.openwavecorp.com:8080/locationstudio/webservices/validation"/>
 </port>
 </service>
</definitions>

11.2 Messaging

<?xml version="1.0" encoding="UTF-8"?>
<!--generated by GLUE on Thu Aug 08 14:33:04 CEST 2002-->
<definitions name="WMIMessagingService" targetNamespace="http://www.openwave.com/wsdl/WMIMessagingService/"
xmlns:tns="http://www.openwave.com/wsdl/WMIMessagingService/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tme="http://www.openwave.com/" xmlns:ns11="http://www.openwave.com/package/com.openwavecorp.lst.client/">
 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.openwave.com/package/com.openwavecorp.lst.client/">
 <complexType name="WMP10MessagingResponse">
 <complexContent>
 <extension base="ns11:Response">
 <sequence>
 <element name="subscriberStatus" nillable="true" type="ns11:ArrayOfWMP10SubscriberStatus"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="Response">
 <sequence>
 <element name="responseCode" type="int"/>
 <element name="responseDetail" nillable="true" type="string"/>
 </sequence>
 </complexType>
 <complexType name="WMP10SubscriberStatus">
 <complexContent>
 <extension base="ns11:Response">
 <sequence>
 <element name="subscriberId" nillable="true" type="ns11:WMP10SubscriberId"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="ArrayOfWMP10SubscriberStatus">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="ns11:WMP10SubscriberStatus[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="WMP10SubscriberId">
 <complexContent>
 <extension base="ns11:SubscriberId"/>
 </complexContent>
 </complexType>
 <complexType name="SubscriberId">
 <sequence>
 <element name="id" nillable="true" type="string"/>
 <element name="type" nillable="true" type="string"/>
 </sequence>
 </complexType>
 <complexType name="WMP10SmsRequest">

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 39

 <complexContent>
 <extension base="ns11:WMP10MessagingRequest">
 <sequence>
 <element name="delimiter" nillable="true" type="string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="WMP10MessagingRequest" abstract="true">
 <sequence>
 <element name="body" nillable="true" type="string"/>
 <element name="recipients" nillable="true" type="ns11:ArrayOfWMP10SubscriberId"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfWMP10SubscriberId">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="ns11:WMP10SubscriberId[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="WMP10WapRequest">
 <complexContent>
 <extension base="ns11:WMP10MessagingRequest">
 <sequence>
 <element name="mediaType" nillable="true" type="string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </schema>
 </types>
 <message name="sendSmsMessage0In">
 <part name="clientId" type="xsd:string"/>
 <part name="password" type="xsd:string"/>
 <part name="request" type="ns11:WMP10SmsRequest"/>
 </message>
 <message name="sendSmsMessage0Out">
 <part name="Result" type="ns11:WMP10MessagingResponse"/>
 </message>
 <message name="sendWapMessage1In">
 <part name="clientId" type="xsd:string"/>
 <part name="password" type="xsd:string"/>
 <part name="request" type="ns11:WMP10WapRequest"/>
 </message>
 <message name="sendWapMessage1Out">
 <part name="Result" type="ns11:WMP10MessagingResponse"/>
 </message>
 <portType name="WMIMessaging">
 <operation name="sendSmsMessage" parameterOrder="clientId password request">
 <input name="sendSmsMessage0In" message="tns:sendSmsMessage0In"/>
 <output name="sendSmsMessage0Out" message="tns:sendSmsMessage0Out"/>
 </operation>
 <operation name="sendWapMessage" parameterOrder="clientId password request">
 <input name="sendWapMessage1In" message="tns:sendWapMessage1In"/>
 <output name="sendWapMessage1Out" message="tns:sendWapMessage1Out"/>
 </operation>
 </portType>
 <binding name="WMIMessaging" type="tns:WMIMessaging">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sendSmsMessage">
 <soap:operation soapAction="sendSmsMessage" style="rpc"/>
 <input name="sendSmsMessage0In">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.messaging.WMIMessagingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="sendSmsMessage0Out">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.messaging.WMIMessagingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="sendWapMessage">
 <soap:operation soapAction="sendWapMessage" style="rpc"/>
 <input name="sendWapMessage1In">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.messaging.WMIMessagingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="sendWapMessage1Out">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.messaging.WMIMessagingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 40

 </binding>
 <service name="WMIMessagingService">
 <documentation>Wireless Messaging Interface WebService</documentation>
 <port name="WMIMessaging" binding="tns:WMIMessaging">
 <soap:address location="http://trinity.swed.openwavecorp.com:8080/locationstudio/webservices/messaging"/>
 </port>
 </service>
</definitions>

11.3 Event Billing

<?xml version="1.0" encoding="UTF-8"?>
<!--generated by GLUE on Thu Aug 08 14:34:27 CEST 2002-->
<definitions name="WBIBillingService" targetNamespace="http://www.openwave.com/wsdl/WBIBillingService/"
xmlns:tns="http://www.openwave.com/wsdl/WBIBillingService/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tme="http://www.openwave.com/" xmlns:ns11="http://www.openwave.com/package/com.openwavecorp.lst.client/">
 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.openwave.com/package/com.openwavecorp.lst.client/">
 <complexType name="WBP10BillingResponse">
 <complexContent>
 <extension base="ns11:Response"/>
 </complexContent>
 </complexType>
 <complexType name="Response">
 <sequence>
 <element name="responseCode" type="int"/>
 <element name="responseDetail" nillable="true" type="string"/>
 </sequence>
 </complexType>
 <complexType name="WBP10BillingRequest">
 <sequence>
 <element name="eventId" nillable="true" type="string"/>
 <element name="subscriber" nillable="true" type="ns11:WBP10SubscriberId"/>
 <element name="startTime" nillable="true" type="dateTime"/>
 <element name="endTime" nillable="true" type="dateTime"/>
 <element name="trackingId" nillable="true" type="string"/>
 </sequence>
 </complexType>
 <complexType name="WBP10SubscriberId">
 <complexContent>
 <extension base="ns11:SubscriberId"/>
 </complexContent>
 </complexType>
 <complexType name="SubscriberId">
 <sequence>
 <element name="id" nillable="true" type="string"/>
 <element name="type" nillable="true" type="string"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 <message name="sendEvent0In">
 <part name="clientID" type="xsd:string"/>
 <part name="password" type="xsd:string"/>
 <part name="wbpRequest" type="ns11:WBP10BillingRequest"/>
 </message>
 <message name="sendEvent0Out">
 <part name="Result" type="ns11:WBP10BillingResponse"/>
 </message>
 <portType name="WBIBilling">
 <operation name="sendEvent" parameterOrder="clientID password wbpRequest">
 <input name="sendEvent0In" message="tns:sendEvent0In"/>
 <output name="sendEvent0Out" message="tns:sendEvent0Out"/>
 </operation>
 </portType>
 <binding name="WBIBilling" type="tns:WBIBilling">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sendEvent">
 <soap:operation soapAction="sendEvent" style="rpc"/>
 <input name="sendEvent0In">
 <soap:body use="encoded" namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.billing.WBIBillingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="sendEvent0Out">
 <soap:body use="encoded" namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.billing.WBIBillingService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
 <service name="WBIBillingService">
 <documentation>Wireless Billing Interface WebService</documentation>

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 41

 <port name="WBIBilling" binding="tns:WBIBilling">
 <soap:address location="http://trinity.swed.openwavecorp.com:8080/locationstudio/webservices/billing"/>
 </port>
 </service>
</definitions>

11.4 Location

<?xml version="1.0" encoding="UTF-8"?>
<!--generated by GLUE on Thu Jun 27 14:52:18 CEST 2002-->
<definitions name="WLILocationService" targetNamespace="http://www.themindelectric.com/wsdl/WLILocationService/"
xmlns:tns="http://www.themindelectric.com/wsdl/WLILocationService/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tme="http://www.themindelectric.com/" xmlns:ns11="http://www.themindelectric.com/package/com.openwavecorp.lst.client/">
 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.themindelectric.com/package/com.openwavecorp.lst.client/">
 <complexType name="MLP300LocationResponse">
 <sequence>
 <element name="addInfo" nillable="true" type="string"/>
 <element name="result" nillable="true" type="string"/>
 <element name="resId" nillable="true" type="string"/>
 <element name="mLP300Positions" nillable="true" type="ns11:ArrayOfMLP300Position"/>
 </sequence>
 </complexType>
 <complexType name="MLP300Position">
 <sequence>
 <element name="time" nillable="true" type="string"/>
 <element name="x" nillable="true" type="string"/>
 <element name="y" nillable="true" type="string"/>
 <element name="z" nillable="true" type="string"/>
 <element name="radius" nillable="true" type="string"/>
 <element name="altAcc" nillable="true" type="string"/>
 <element name="alt" nillable="true" type="string"/>
 <element name="speed" nillable="true" type="string"/>
 <element name="direction" nillable="true" type="string"/>
 <element name="result" nillable="true" type="string"/>
 <element name="resId" nillable="true" type="string"/>
 <element name="utcOff" nillable="true" type="string"/>
 <element name="levConf" nillable="true" type="string"/>
 <element name="addInfo" nillable="true" type="string"/>
 <element name="mLP300Msid" nillable="true" type="ns11:MLP300Msid"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfMLP300Position">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="ns11:MLP300Position[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="MLP300Msid">
 <sequence>
 <element name="msid" nillable="true" type="string"/>
 <element name="msidType" nillable="true" type="string"/>
 </sequence>
 </complexType>
 <complexType name="MLP300LocationRequest">
 <sequence>
 <element name="clientId" nillable="true" type="string"/>
 <element name="clientPwd" nillable="true" type="string"/>
 <element name="respReq" nillable="true" type="string"/>
 <element name="respTimer" nillable="true" type="string"/>
 <element name="llAcc" type="int"/>
 <element name="horAcc" type="int"/>
 <element name="altAcc" type="int"/>
 <element name="maxLocAge" type="int"/>
 <element name="locType" nillable="true" type="string"/>
 <element name="prioType" nillable="true" type="string"/>
 <element name="mLP300Msid" nillable="true" type="ns11:ArrayOfMLP300Msid"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfMLP300Msid">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType" wsdl:arrayType="ns11:MLP300Msid[]"/>
 </restriction>
 </complexContent>
 </complexType>
 </schema>
 </types>

 Interface Control Document

16 January 2003
OPENWAVE PROPRIETARY AND CONFIDENTIAL Page 42

 <message name="getLocation0In">
 <part name="mLP300LocationRequest" type="ns11:MLP300LocationRequest"/>
 </message>
 <message name="getLocation0Out">
 <part name="Result" type="ns11:MLP300LocationResponse"/>
 </message>
 <portType name="WLILocationService">
 <operation name="getLocation" parameterOrder="mLP300LocationRequest">
 <input name="getLocation0In" message="tns:getLocation0In"/>
 <output name="getLocation0Out" message="tns:getLocation0Out"/>
 </operation>
 </portType>
 <binding name="WLILocationService" type="tns:WLILocationService">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getLocation">
 <soap:operation soapAction="getLocation" style="rpc"/>
 <input name="getLocation0In">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.location.WLILocationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="getLocation0Out">
 <soap:body use="encoded"
namespace="http://tempuri.org/com.openwavecorp.products.locationstudio.presentation.location.WLILocationService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
 <service name="WLILocationService">
 <documentation>com.openwavecorp.products.locationstudio.presentation.location.WLILocationService web service</documentation>
 <port name="WLILocationService" binding="tns:WLILocationService">
 <soap:address location="http://192.168.12.136:8080/locationstudio/webservices/location"/>
 </port>
 </service>
</definitions>

