
Openwave WAP Push Library,
Java Edition

Release 1.0
 Developer’s Guide
Openwave Systems Inc.

1400 Seaport Boulevard

Redwood City, CA 94063 U.S.A.

http://www.openwave.com

Part Number LPDJ-10-008

http://www.openwave.com

Legal Notice

Copyright © 1999–2002 Openwave Systems Inc. All rights reserved.

The contents of this document constitute valuable proprietary and confidential property of Openwave Systems Inc. and are
provided subject to specific obligations of confidentiality set forth in one or more binding legal agreements. Any use of this
material is limited strictly to the uses specifically authorized in the applicable license agreement(s) pursuant to which such
material has been furnished. Any use or disclosure of all or any part of this material not specifically authorized in writing by
Openwave Systems Inc. is strictly prohibited.

Openwave, the Openwave logo, and Services OS are registered trademarks and/or trademarks of Openwave Systems Inc. in
various jurisdictions. All other trademarks are the property of their respective owners.

For technical information on Openwave products, go to

http://developer.openwave.com

Please send comments about this book or corrections to

doc-comments@openwave.com
2 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

http://developer.openwave.com
mailto:doc-comments@openwave.com

Contents

About This Book 7

Openwave SDK 7
Audience and Prerequisites 8
Style and Typographical Conventions 9

Code Examples 9
Other Documentation 9

1 Getting Started 11

Requirements 12
WAP Push Library Package Overview 12

Libraries 12
wappush.jar 12
servlet.jar 12
xerces.jar 13

Tools and Utilities 13
PushIT 13

Examples 13
Travel 13
Source Code 13

WAP Push Developer Resources 13
WAP Gateway for Openwave Developers 14

2 Installation and Configuration 15

Installing and Configuring 15
Using the Example 16

Travel 16

3 Push Access Protocol Overview 17

About the Push Access Protocol 17
PAP Operations 18
Push Submission Content Types 19
Device Types 19
How the WAP Push Library Implements PAP 20
System Configuration Requirements 20
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 3

Contents

4 WAP Push Library Overview 21

WAP Push Library Basics 21
PAP operations 22
Push Submission Content Types 22
PPG and Client Addresses 23

Extracting PPG and Client Addresses from PPG Headers 23
Secure Versus Nonsecure PPG Addresses 24

Multicasting 24
Push Submission Identification 25
Specifying Push Submission Delivery Timing 25
PPG Response Message 25
Exception Handling 27

WAP Push Library Architecture Overview 28
Sending a Push Submission 30

Sending a Service Indication using the WAP Push Library 31
Extracting the Addresses and Sending the Push 32
The Push Submission 33
The SI User Interface 34

5 SimplePush Class Essentials 35

Required Import Statements 35
PPG and Client Addresses 36
SimplePush Class Basics 36
Service Indication Payload Example 37

What It Does 37
spServiceInd.java 38

How It Works 40
Service Loading Payload Example 41

What It Does 41
spServiceLoad.java 42

How It Works 44
Cache Operation Payload Example 45

What It Does 45
spCacheOp.java 46

How It Works 48
Custom Content Payload Example 49

What It Does 49
spCustomContent.java 50

How It Works 52
Status Query Message and Response Example 53

What It Does 53
spStatusQM.java 54

How It Works 56
Push Cancel Message and Response Example 57

What It Does 57
spCancelPush.java 58

How It Works 60
Client Capabilities Query Message and Response Example 61

What It Does 61
spClientCaps.java 62

How It Works 64
Travel Example 65
4 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

Contents

What It Does 65
TravelServer.java 66

How It Works 72

6 WAP Push Library Essentials 77

Required Import Statements 77
WAP Push Library Application Basics 78
PPG and Client Addresses 78
Service Indication Payload Example 79

What It Does 79
ServiceInd.java 80

How It Works 82
Service Loading Payload Example 85

What It Does 85
ServiceLoad.java 86

How It Works 88
Cache Operation Payload Example 91

What It Does 91
CacheOp.java 92

How It Works 94
Custom Content Payload Example 96

What It Does 96
Custom.java 97

How It Works 99
Status Query Message and Response Example 101

What It Does 101
StatusQM.java 102

How It Works 104
Push Cancel Message and Response Example 105

What It Does 105
CancelPush.java 106

How It Works 108
Client Capabilities Query Message and Response Example 109

What it Does 109
ClientCaps.java 110

How It Works 113

7 Debugging WAP Push Library Applications 115

Debugging Java Code 115
Exception Handling 116
Catching and Examining Exceptions 116

WAP Push Library Exception Handling 117
Examining the PPG Response Message 118

8 Tools and Utilities 119

Using the Push Initiator Tool 120
Starting PushIT 120
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 5

Contents

Push Submission Screen 120
PPG Address 121
Push ID 121
Recipients 121
Character Set 123
Reference 123
Notify To 124
Deliver Before/After 124
Quality of Service 124
Push Message 125
HTTP Headers 126
User Agent Profile 126
Preview 126
Send 126
PPG Response Log 127

Push Cancellation Screen 128
Status Query Screen 129
Client Capabilities Query Page 130

Understanding PushIT 131

A License Agreements 133

Xerces 133
Tomcat 135

Glossary 137

Index 139
6 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

About This Book

This book provides instructions for using the Openwave WAP Push Library, Java
Edition 1.0 to build Push Submissions for Openwave Push Proxy Gateway (PPG)
servers.

IMPORTANT Check the Openwave Developer web site
(http://developer.openwave.com) for a list of publicly available wireless devices
and their browser versions. For unannounced products and services, contact
your carrier to determine the Openwave Mobile Browser releases that you need
to support.

Openwave SDK

The Openwave software development kit (SDK) is a tool for developing,
debugging, and maintaining your wireless programs. Using the SDK, you can test
your code from your local disk, through your own server, or through a Mobile
Access Gateway. The tools in the SDK include an editor, an output window that
lists transaction information, an HTTP window that displays source code, and the
ability to view history, cookies, and variables.

In order to use the SDK, you must download and install the correct release. SDK
releases support the following browsers:

Openwave SDK Version 5 Mobile Browser, WAP Edition 5.0 or later

UP.SDK 4.1 Mobile Browser 4.1 or later

UP.SDK 4.0 Mobile Browser 4.0 or later

UP.SDK 3.2 for WML1.1 Mobile Browser 3.1 or later
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 7

http://developer.openwave.com

About This Book
Audience and Prerequisites

Audience and Prerequisites

This book is intended for developers who are creating wireless push services for
mobile browser devices that are accessing an Openwave Mobile Access Gateway.

To use this book profitably, you must have the following background:

• A general understanding of the Internet and the World Wide Web

• Good working knowledge of HTML, WML, and XML

• Good working knowledge of the Java programming language and
object-oriented programming

• Good working knowledge of the Push Access Protocol (PAP)

• A thorough understanding of the WAP Push Access Protocol and related
specifications:
❍ WAP Push Message
❍ WAP Push Proxy Gateway Service
❍ WAP Push Access Protocol
❍ WAP Push Architectural Overview
❍ WAP Service Indication
❍ WAP Service Loading
❍ WAG UAPROF
❍ WAP Cache Operation
❍ WAP Push OTA Protocol
❍ Wireless Datagram Protocol Specification

All of these specification documents and all updates to them are available for free
download from the Wireless Application Protocol Forum at
http://www.wapforum.org. Visit this site regularly to make sure that you have all of
the latest specification documents and updates.
8 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

http://www.wapforum.org

About This Book
Other Documentation

Style and Typographical Conventions

The term mobile browser device refers to all Openwave Mobile Access
Gateway-enabled mobile devices, including wireless phones, personal digital
assistants, and two-way pagers. The term refers to both the hardware and the
Openwave Mobile Browser software installed on it.

In this documentation, all illustrations and examples refer to a generic mobile
browser device with the following characteristics:

• A 4 x 20 character display. Note that the Openwave Mobile Browser always
reserves one line for function key labels and status.

• accept, prev, and options function keys. The actual labels and locations of these
keys vary from one device to another.

IMPORTANT Keep in mind that the display area and key arrangements on real
mobile browser devices vary considerably. Some mobile browser devices
reverse the location of the accept and options keys relative to the illustrations in
this documentation. Others have fewer or no function keys and use different
mechanisms for implementing the accept, prev, and options actions, such as a jog
shuttle or other user-interface gestures.

This manual uses different fonts to represent information:

• Text that appears like this identifies code elements such as method and field
names.

• Text that appears like this identifies parameter names in method
declarations.

Code Examples

Omitted code is indicated with ellipses. For instance, the ellipses in the following
example indicate that additional code exists in this WAP Push Library code block:

try {
ppgURL = new URL(ppgAddress);
coURI = new URL(cacheOpURI);
Pusher ppg = new Pusher(ppgURL);
CacheOperation co = new CacheOperation(coURI,

CacheOperationType.cachedService);
...
}

Other Documentation

For a complete list of available documentation, see the Openwave Developer site
at:

http://developer.openwave.com
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 9

http://developer.openwave.com

About This Book
Other Documentation

10 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

1
1Getting Started

The Openwave WAP Push Library facilitates implementation of the Push Access
Protocol (PAP). With the libraries and tools provided, you can develop push
applications and services.

Figure 1-1. Push configuration

As shown in Figure 1-1, a web server with the WAP Push Library initiates push
operations. The Push Proxy Gateway (PPG) handles those operations and sends
the appropriate information to the mobile browser device. In this case, the user has
subscribed to a push service and the web server initiates the push operation; this is
known as a server-initiated push.

It’s also possible for the user to initiate a push operation. The web site can include a
link that initiates a push operation when the user selects it. This is known as a
client-initiated push.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 11

Getting Started
WAP Push Library Package Overview1

Requirements

Refer to the Release Notes for a complete list of requirements for installing and
using the WAP Push Library.

WAP Push Library Package Overview

When you install the WAP Push Library, the following components are available.

Libraries

wappush.jar

The wappush.jar file contains the WAP Push Library Java package and
accompanying JavaDoc API documentation. This package provides all of the
functionality you need to create push applications and services.

The WAP Push Library package includes the SimplePush class, which you can use
to create simple PAP applications quickly. The SimplePush class consists of a series
of methods that encapsulate essential WAP Push Library functionality, greatly
reducing the amount and complexity of code required to develop PAP applications.

servlet.jar

The servlet.jar file is part of Tomcat. It is included with the WAP Push Library so
you can compile the Travel demo source code using the build.xml file, without
having to insert servlet.jar into your classpath environment variable.

NOTE The Tomcat software was developed by the Apache Software Foundation
(http://www.apache.org).
12 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

http://www.apache.org

Getting Started
WAP Push Developer Resources 1

xerces.jar

Xerces is a general purpose XML parser used by the WAP Push Library.

NOTE The Xerces library software was developed by the Apache Software
Foundation (http://www.apache.org).

Tools and Utilities

PushIT

PushIT is a Java tool that you can use to submit push operations and review the
results. Using the PushIT GUI, you can quickly set the various parameters and
content required by the Push Proxy Gateway and submit the operation. Complete
source code can be found in the <installroot>\examples\PushIT\src\java directory.

For more information, see “Using the Push Initiator Tool” on page 120.

Examples

The WAP Push Library includes an example application and source code that show
you how to use the WAP Push Library APIs.

Travel

The Travel example depicts a web site at which users can make travel arrangements.
This application uses the WAP Push Library APIs to alert users to changes in flight
plans.

Source Code

The WAP Push Library includes the source code for the Travel example and
PushIT. You can use the source code as a reference showing how to use the WAP
Push Library APIs. The source code is located in the following directories:

• PushIT: <installroot>\examples\PushIT\src\java

• TravelDemo: <installroot>\examples\TravelDemo\src\java

WAP Push Developer Resources

Openwave provides a variety of developer support resources online including a
quick start tutorial, a WAP Push developer’s page, and an application style guide.
Visit the Openwave Developer site at:

http://developer.openwave.com

Click the WAP Push link under the Products and Technology heading to access all
of these resources.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 13

http://developer.openwave.com
http://www.apache.org

Getting Started
WAP Push Developer Resources1

WAP Gateway for Openwave Developers

Use Openwave’s Developer WAP Gateway with the Openwave SDK to test your
applications in a fully compliant and secure WAP environment. Our Openwave
Mobile Access Gateway Server is open to all registered Openwave developers. Visit
the Openwave Developer site at:

http://developer.openwave.com

Click the Mobile Access Gateway Provisioning link for more information on
creating and managing your subscriber accounts.
14 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

http://developer.openwave.com

2
2Installation and Configuration

Installing and Configuring

This chapter explains how to install and configure the WAP Push Library and asso-

ciated utilities. See the Release Notes information on system requirements for the
WAP Push Library.

To Install the WAP Push Library

• Download the OPWVWAPPushLib.jar file and open it. The file starts the
installation process and by default places the WAP Push Library files in the
C:\Openwave\wappushjava directory. Included in this installation are library jar
files and examples.

To Configure Tomcat

• If you plan to use WML or WMLScript files, you need to add the following to
the mime-mapping section of the web.xml file in the WEB-INF folder of the
Tomcat context that hosts the WML or WMLScript files:
<mime-mapping>

<extension>
wmls

</extension>
<mime-type>

text/vnd.wap.wmlscript
</mime-type>

</mime-mapping>
<mime-mapping>

<extension>
wml

</extension>
<mime-type>

text/vnd.wap.wml
</mime-type>

</mime-mapping>
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 15

Installation and Configuration
Using the Example2

To Configure the Travel Example

The Travel example is designed to work with Tomcat. You must copy the example
files into the Tomcat directory to make it work.

1 Copy travel.war to the [tomcat_home]/webapps directory.

2 If Tomcat is currently running, shut it down and then restart it.

3 Access the Travel example with the following URL:
http://[ipaddress]:[port]/travel/travel2.wml.
For example, http://devgate2.openwave.com:8080/travel/travel2.wml. It is
important not to access the Travel example using a URL that begins with
http://localhost because this disables some Travel example features.

Using the Example

Travel

Make sure that you have copied the Travel example files to the Tomcat directory, as
described in “To Configure the Travel Example.”

To run the Travel example, point your mobile browser to the travel2.wml file.
When the WML deck loads, select option 2, Travel Status. Continue with the
example until you reach the Notify Me of Changes option. Select this option to
trigger a push operation that informs the user of any flight changes.

For more information on using the Travel example, see the Openwave Mobile
Browser WAP Edition 5.0 Graphical Browser Application Style Guide.

For an explanation of how the Travel example uses the WAP Push Library, see
Chapter 6, “WAP Push Library Essentials.”
16 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

3
3Push Access Protocol Overview

About the Push Access Protocol

The Push Access Protocol (PAP) provides a means of sending content from the
Internet to a mobile device, such as a WAP-enabled mobile phone. PAP achieves
this by managing communications between the Internet server that sends the
content, known in this context as a push initiator and the Push Proxy Gateway
(PPG), the server that sends the content on to the target mobile device. The PPG
acts as an intermediary, connecting the wired and wireless networks, which would
otherwise have no way of communicating with each other because they use
different communication protocols.

Figure 3-1. WAP push architecture

Because PAP is a push technology, it operates differently from other types of
network protocols. Unlike HTTP on the Internet, in which the client initiates the
transfer of content by requesting information, PAP allows a server to initiate the
transfer of content to one or more client mobile devices.

PAP is built on Extensible Markup Language (XML) and transported using HTTP
(Hypertext Transfer Protocol), although other transport protocols, such as SMTP
(Simple Mail Transfer Protocol), may be available in the future.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 17

Push Access Protocol Overview
PAP Operations3

A push request is a multipart document that can contain three entities:

• The control entity is an XML document containing delivery instructions
destined for the Mobile Access Gateway PPG. The control entity is mandatory;
it identifies the target mobile device and contains delivery instructions such as
time delivery restrictions.

• The content entity contains content destined for the mobile device. A content
entity is required only for a Push Submission. The content entity must be the
second entity in the multipart document.

• The optional capabilities entity contains the mobile device capabilities for
which the message was formatted. The push initiator may create this entity to
indicate what it assumes the capabilities to be. The PPG also sends a capabilities
entity in response to a Client Capabilities Query message.

These entities are bundled together as a Multi-Purpose Internet Mail Extensions
(MIME) document, which is sent from the push initiator to the Mobile Access
Gateway PPG using HTTP.

PAP Operations

PAP makes possible the following operations:

• Push Submission Delivers a push message from a push initiator to a mobile
device. Because the Push Submission contains address, content, and optional
capabilities entities, it is delivered as a multipart/related document. A Push
Submission can deliver any of the content types described in the next section.

• Status Query The push initiator can request the current status of a Push
Submission. All Status Query requests are delivered as XML documents.

• Push Cancellation Allows the push initiator to attempt to cancel a Push
Submission. All Push Cancellation requests are delivered as XML documents.

• Client Capabilities Query The push initiator can query the PPG to retrieve
the capabilities for a specific mobile device. All CCQ requests are delivered as
XML documents. The PPG returns the CCQ information in a
multipart/related document that the push initiator must parse to retrieve the
relevant information.

• Result Notification The PPG informs the push initiator of the final outcome
of the Push Submission; for example, confirmation of content delivery to the
target mobile device. Result Notification is optional and occurs only if the push
initiator requests it. All Result Notifications are delivered to the push initiator
as XML documents when the final outcome of the Push Submission is known.
Result Notifications are generally not available immediately after sending a
Push Submission. See WAP Push Access Protocol for more information about
Result Notification.
18 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

Push Access Protocol Overview
Device Types 3

Push Submission Content Types

PAP can deliver the following types of content:

• Service Indication (SI) This content type consists of asynchronous
notifications about new email, changes in selected stock prices, news headlines,
advertisements, reminders, and so on. At its most basic, an SI contains a brief
message and a URI specifying a service. The wireless client can either start the
service immediately or store it for later action.

• Service Loading (SL) This content type allows a user agent on a client device
to load and execute a service, specified by a URI, without user intervention.
For example, an SL can notify a mobile device of a low prepaid service balance
and require user action by loading a WML deck that presents a variety of
options.

• Cache Operation This content type makes it possible to invalidate content
objects in the wireless client’s cache. All invalidated content objects must be
reloaded from the server on which they originated the next time they are
accessed. Use Cache Operation if an application cannot predict when content
that it creates will expire. For example, use a Cache Operation to ensure that a
mobile device always loads the most current contents from a mailbox
application. A Cache Operation is an XML document that consists of a URI
and one of the following operation types:
❍ Invalidate object Invalidates the specific object that the URI identifies
❍ Invalidate service Invalidates all objects that share the same URI prefix

• Custom Content This content type can consist of virtually any text, image,
or other media.

Device Types

PAP is designed to meet the constraints of a wide range of small, narrowband
devices. These devices are primarily characterized in four ways:

• Display size Smaller screen size and resolution. A small mobile device such as
a phone may have only a few lines of textual display, each line containing 8 to
12 characters.

• Input devices A limited or special-purpose input device. A phone typically
has a numeric keypad and a few additional function-specific keys. A more
sophisticated device may have software-programmable buttons, but does not
have a mouse or other pointing device.

• Computational resources Low-power CPU and small memory size, often
limited by power constraints.

• Narrowband network connectivity Low bandwidth and high latency.
Devices with 300 bps to 10 kbps network connections and 5 to 10 second
round-trip latency are not uncommon.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 19

Push Access Protocol Overview
System Configuration Requirements3

This document uses the following terms to define broad classes of device
functionality:

• Phone The typical display size ranges from 2 to 10 lines. Input is usually
accomplished with a combination of a numeric keypad and a few additional
function keys. Computational resources and network throughput are typically
limited, especially when compared with more general-purpose computer
equipment.

• Personal digital assistant (PDA) A device with a broader range of
capabilities than a phone. In this document, PDA refers specifically to devices
with additional display and input characteristics. A PDA display often
supports resolution in the range of 160x100 pixels. A PDA may support a
pointing device, handwriting recognition, and a variety of other advanced
features.

How the WAP Push Library Implements PAP

The WAP Push Library is a Java package that encapsulates all of the XML and
multipart/related message-building functionality into a series of classes. When you
use the WAP Push Library, the implementation details of PAP are hidden. You
don’t need to know how to build a Push Submission or any other PAP operation to
use the WAP Push Library. You do need to know how PAP works so that you can
construct push messages and handle responses from the PPG, but you don’t need
to know the details of building or parsing the necessary XML or multipart/related
documents.

System Configuration Requirements

Before you attempt to send content using the WAP Push Library, make sure that
your corporate firewall allows you to send packets to the desired ports on the
PPGs you are using. The mechanisms for client addressing and the ports that the
PPG listens on are implementation specific. For specific information, check with
the PPG administrator at the communication service provider you intend to use.
20 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

4
4WAP Push Library Overview

WAP Push Library Basics

The WAP Push Library is a Java package composed of classes that encapsulate the
most useful aspects of Push Access Protocol (PAP) communication, including Push
Submission and response, content building, and exception handling. The WAP
Push Library hides the details of PAP communication, building all required XML
or multipart/related documents internally, forming the completed HTTP
transaction, and embodying the transport layer security, either Secure Sockets
Layer (SSL) or Transport Layer Security (TLS), used to protect a transmission.

The WAP Push Library dramatically simplifies the process of building PAP
applications. As a developer, you do not need to know any of the details of the
XML or multipart/related documents that make up a Push Submission. All of the
elements needed to build a well-formed Push Submission are required parameters
of the various WAP Push Library class constructors, making it impossible to forget
any of the necessary elements. The WAP Push Library includes classes that parse
all of the XML documents the PPG sends in response to a Push Submission,
making it easy for your applications to provide detailed information to users.

This chapter provides an overview of the major WAP Push Library classes and how
they correspond to specific PAP entities.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 21

WAP Push Library Overview
WAP Push Library Basics4

PAP operations

Table 4-1 lists the WAP Push Library classes that encapsulate PAP operations.

When building a WAP Push Library application, use the class that corresponds to
the desired PAP operation. For descriptions of the PAP operations, see “PAP
Operations” on page 18.

Push Submission Content Types

As with PAP operations, a WAP Push Library class encapsulates each Push
Submission content type. Table 4-2 lists the content types and the corresponding
WAP Push Library classes.

For descriptions of the content types, see “Push Submission Content Types” on
page 19.

NOTE Openwave is developing new Push Submission content types. Check the
Openwave Developer web site (http://developer.openwave.com) for the latest
information.

Table 4-1. PAP operations and WAP Push Library classes

PAP operation WAP Push Library class

Push Submission PushMessage

Status Query StatusQueryMessage

Push Cancellation CancelMessage

Client Capabilities Query CcqMessage

Table 4-2. Push Submission content types and WAP Push Library classes

Content type WAP Push Library class

Service Indication ServiceIndication

Service Loading ServiceLoading

Cache Operation CacheOperation

Custom Content CustomContent
22 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

http://developer.openwave.com

WAP Push Library Overview
WAP Push Library Basics 4

PPG and Client Addresses

All PAP operations require PPG and client addresses. The PPG address is a
java.net.URL object, which the WAP Push Library encapsulates in the Pusher class.
The PPG address specifies the application on the PPG that delivers a PAP
operation to the wireless client, as shown in the following example:

http://devgate2.openwave.com:9002/pap

The Pusher class constructor renders a properly formed XML PPG address value.

The client address is simply a java.lang.String object that you pass to the
constructor of the desired PAP operation class. Client addresses must be properly
formatted using either the subscriber ID (SUB_ID) or phone number of the client,
as shown in the following examples.

For the user jdoe provisioned on devgate2.openwave.com, the client address is
rendered as:

jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com

For a user whose phone number is 123-456-7890, the client address is rendered as:

1234567890/TYPE=PLMN@ppg.openwave.com

The class constructor into which you pass the client address renders a properly
formed XML address value for the desired PAP operation.

Extracting PPG and Client Addresses from PPG Headers

You can extract the PPG and client addresses from the HTTP headers returned
with any request from the PPG. You can use this information dynamically in WAP
Push Library applications or in other applications that are devoted to building lists
of users who visit your WAP sites. The following HTTP headers returned from the
PPG contain this information.

• X-Up-Subno The address of the client

• X-Up-Uplink The address of the Openwave MAG, if connected

• X-Up-Wap-Push-Secure Secure (HTTPS) PPG address

• X-Up-Wap-Push-Unsecure Nonsecure (standard HTTP) PPG address

Query these headers whenever you need to capture a PPG address. Doing so
allows you, for example, to provide a sign-up service for push messages that can get
the PPG address directly from the HTTP request headers rather than requiring the
user to type in the desired PPG address.

You should use the X-Up-Uplink header only to determine if a connection is through
an Openwave Mobile Access Gateway (MAG).

See “Travel Example” on page 65 for an example of how to use these headers to
extract the desired information.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 23

http://devgate2.openwave.com:9001/pap

WAP Push Library Overview
WAP Push Library Basics4

Secure Versus Nonsecure PPG Addresses

The PPG infrastructure supports both secure (HTTPS) and nonsecure (standard
HTTP) connections. The WAP Push Library supports both connection types
transparently. The only difference is the PPG address itself.

A nonsecure connection is ideally suited for initial application testing because it
does not introduce any additional complexity. A secure connection is often
desirable, but does impose some constraints in the form of server and client
certificates. There are two issues to consider:

• The server certificate is not issued by a well-known certificate authority (CA).
Server certificates from well-known CA do not generally pose any difficulties.
Certificates from other CAs must be manually added to the list of trusted
certificates on the client. This is generally true of PPG test installations. To add
the server certificate to the list of trusted certificates on the client, follow these
steps:

1 Copy the server certificate to the client machine

2 Save the server certificate to a file

3 Install the server certificate on the Java client

• The PPG is configured to require client (application) authentication, in which
case only certain push initiators have access to secure connections on the PPG.
In this case, the PPG is configured to request the client certificate during the
SSL handshake process, something not normally required during HTTPS
communication using a web browser. To satisfy the PPG request, the client
must have an appropriate client certificate installed to access the PPG using a
secure connection.

Multicasting

The WAP Push Library supports delivery of a single Push Submission to multiple
client addresses. This capability, called multicasting, saves enormous time and effort
whenever you want to deliver a general message to all or part of a subscriber base.
Use the PushMessage.addAddress method to build the desired list of recipients for a
Push Submission. The Push Submission can deliver any of the available content
types as its payload.
24 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Overview
WAP Push Library Basics 4

Push Submission Identification

Every Push Submission, regardless of the payload type, must include a unique
identifier. The identifier distinguishes one Push Submission from all others, a
critical factor if you want to cancel or retrieve status information for a Push
Submission. The PushMessage, CancelMessage, and StatusQueryMessage class
constructors define this parameter as a java.lang.String object. Assign each Push
Submission a unique identifier that includes the domain name of the push initiator,
as in the following examples:

2903011435@www.openwave.com

www.openwave.com/2903011435

See WAP Push Access Protocol for more information and examples.

Specifying Push Submission Delivery Timing

You can use the WAP Push Library to specify the delivery timing for any Push
Submission by setting a deliver-before or deliver-after time. You can set one or
both of these values to ensure that a Push Submission is delivered at the correct
time. The PushMessage class provides two methods that set the delivery timing:
setDeliverBeforeTimestamp and setDeliverAfterTimestamp. See the WAP Push
Library JavaDoc API documentation for more information.

PPG Response Message

The WAP Push Library Pusher class, which encapsulates the address of a PPG,
includes a send method. As its name implies, the send method dispatches a Push
Submission to the PPG. The send method returns the response message from the
PPG encapsulated in an object of the class corresponding to the PAP operation
response type.

Table 4-3 lists the response types and the corresponding WAP Push Library classes.

The PPG response message indicates the immediate outcome of a Push Submission.
The response indicates only that the PPG accepted the message for processing or
rejected it for any of several reasons. The PPG response does not indicate that the
client received the submission. The final outcome of the message is indicated by the
PAP Result Notification operation, which falls outside the scope of the WAP Push
Library. For a description of the Result Notification operation, see “PAP
Operations” on page 18.

Table 4-3. PAP response types and WAP Push Library classes

PAP operation response WAP Push Library class

Push Submission Response PushResponse

Status Query Response StatusQueryResponse

Push Cancellation Response CancelResponse

Client Capabilities Query Response CcqResponse
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 25

WAP Push Library Overview
WAP Push Library Basics4

Each WAP Push Library response class parses the XML response document from
the PPG and provides methods that extract the desired response information,
which can include both numeric codes and text messages. The numeric codes fall
into the following ranges:

• 1xxx: Success The action was successfully received, understood, and accepted

• 2xxx: Client Error The request contains bad syntax or cannot be fulfilled

• 3xxx: Server Error The server failed to fulfil an apparently valid request

• 4xxx: Service Failure The service could not be performed. The operation
may be retried

• 5xxx: Mobile Device Abort The mobile device aborted the operation

Table 4-4 lists the response message codes and descriptions returned from the PPG.

Table 4-4. PAP response codes and descriptions

Code Description

1000 OK

1001 Accepted for Processing

2000 Bad Request

2001 Forbidden

2002 Address Error

2003 Address Not Found

2004 Push ID Not Found

2005 Capabilities Mismatch

2006 Required Capabilities Not Supported

2007 Duplicate Push ID

3000 Internal Server Error

3001 Not Implemented

3002 Version Not Supported

3003 Not Possible

3004 Capability Matching Not Supported

3005 Multiple Addresses Not Supported

3006 Transformation Failure

3007 Specified Delivery Method Not Possible

3008 Capabilities Not Available

3009 Required Network Not Available

3010 Required Bearer Not Available

4000 Service Failure

4001 Service Unavailable

5xxx Mobile Client Aborted
26 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Overview
WAP Push Library Basics 4

In addition to the standard numeric code and text message, the Push Status Query
Response also contains an attribute that indicates the status of the specified Push
Submission. Nine message states are currently specified:

• aborted The addressee aborted the message.

• cancelled A Push Cancellation successfully canceled the message.

• delivered The PPG successfully delivered the message to the addressee.

• expired The message reached the maximum age allowed by PPG policy or
could not be delivered by the time specified in the Push Submission.

• pending The PPG accepted the message and is in the process of delivering it.

• rejected The addressee rejected the message.

• timeout The delivery process timed out on the PPG.

• undeliverable A problem prevented the message from being delivered. Call
the StatusQueryResult.getCode and StatusQueryResult.getDesc methods to
retrieve the code and text message returned from the PPG.

• unknown The PPG has no information about the status of the message.

Exception Handling

The WAP Push Library uses the WapPushException class to throw an exception if a
parameter is missing, out of range, or specified improperly, or if a response from
the PPG is missing one or more required elements. All public constructors and
methods that require one or more parameters throw this exception, as do all of the
message response classes. Your WAP Push Library applications should always
catch and handle these exceptions, which can be very helpful to you during
debugging.

The only specific exception that the WAP Push Library generates internally occurs
if a PAP message is garbled when the PPG receives it. In that case, the PPG returns
the <badmessage-response> XML element with a message describing the cause of the
exception and a fragment of the garbled submission. All of the WAP Push Library
response classes are designed to instantiate a BadMessageException object and return
the exception message in the response object. Your WAP Push Library applications
should always catch and handle this exception.

All other exceptions are handled by the various Java classes that your application
imports. At a minimum, all WAP Push Library applications should import the
following Java exception classes and handle any exceptions they throw:

java.io.IOException
java.io.FileNotFoundException
java.net.MalformedURLException

For complete exception-handling information, refer to the manuals for your Java
development environment.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 27

WAP Push Library Overview
WAP Push Library Architecture Overview4

WAP Push Library Architecture Overview

Applications built on the WAP Push Library construct PAP operations using the
appropriate class. Each PAP operation class provides one or more mutator (set)
methods that allow the caller to specify optional PAP values for each operation
type. The Pusher class provides a send method, which delivers the PAP message to
the specified PPG. The PPG then returns a corresponding response object, which
the WAP Push Library application can query to determine specific information
about the immediate status of the PAP operation.

A WAP Push Library application running on the push initiator instantiates the
appropriate PAP operation subclass and sends it to the PPG using an instance of
the Pusher object. The PPG receives the PAP message, processes it, and returns an
XML document. The WAP Push Library XML Parser converts the XML response
to the proper PAP response object and returns it to the push initiator. Figure 4-1
illustrates the WAP Push Library architecture.

Figure 4-1. WAP Push Library architecture
28 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Overview
WAP Push Library Architecture Overview 4

The Pusher object encapsulates the transport layer protocol, which is limited to
HTTP. Instances of the Pusher object format the various message types into
properly formed HTTP transactions and handle any specified transport layer
security (SSL or TLS). All WAP Push Library communications with the PPG are
synchronous.

The WAP Push Library application running on the push initiator can instantiate
any number of Pusher objects, each of which represents a different PPG. The push
initiator can therefore send a single PAP operation to any or all of the PPGs for
which a Pusher object exists. The push initiator can also send the same PAP
operation to the same PPG as many times as necessary.

If the PAP operation is an instance of the PushMessage object, the WAP Push
Library application must first build any one of the possible payload types (Cache
Operation, Custom Content, Service Indication, or Service Loading), using the
corresponding payload class. A MimeEntity object instance then encapsulates the
payload object into the PAP operation transmission.

Finally, the WAP Push Library handles all conversion between the Java standard
UNICODE encoding and the PPG standard UTF-8 encoding of HTTP
transactions.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 29

WAP Push Library Overview
Sending a Push Submission4

Sending a Push Submission

To send a Push Submission, follow the general steps outlined in this section. For
example code with full explanations, see Chapter 6, “WAP Push Library
Essentials.”

1. Get the subscriber IDs or phone numbers of the subscribers to whom you
want to send a Push Submission. You can send a single Push Submission to as
many subscribers as desired using the PushMessage.addAddress method. There
are two general ways to get the desired subscriber IDs or phone numbers:
❍ Subscription list Users have subscribed to your service and have

provided their subscriber IDs or phone numbers.
❍ HTTP headers Check the HTTP headers for requests from wireless

devices. When the Mobile Access Gateway Server makes an HTTP request
to a WML service, it adds headers that provide information about the
subscriber, the mobile browser, and the Mobile Access Gateway Server
used to deliver the requests. The web server converts these headers into
environment variables, which you can retrieve using facilities such as the C
function, getenv, or the special Perl array, @ENV. The whoami.cgi example
CGI script included with the Openwave SDK provides a simple example of
how to retrieve these environment variables. The header that contains
subscriber IDs is HTTP_X_UP_SUBNO. An example of a Java method that
retrieves information from the HTTP headers is:
HttpServletRequest request;
String subscriber_address = request.getHeader("X-Up-Subno") +

"/TYPE=USER@ppg.openwave.com";

2. Get the PPG address of the carrier that you want to use to send a Push
Submission.
❍ Carrier Contract Contact the carrier whose PPG you want to use.
❍ HTTP headers Check the HTTP headers for requests from wireless

devices as described above. The following headers are available:
HTTP_X_UP_UPLINK Contains the MAG address
HTTP_X_UP_WAP_PUSH_UNSECURE Contains the nonsecure (standard HTTP)
PPG address
HTTP_X_UP_WAP_PUSH_SECURE Contains the secure (HTTPS) PPG address
An example of a Java method that retrieves PPG address information from
the HTTP headers is:
HttpServletRequest request;
String PPGaddress = request.getHeader("X-Up-Wap-Push-Unsecure");
30 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Overview
Sending a Push Submission 4

3. Make sure that your corporate firewall allows you to send Push
Submissions.
Because the PPG ports are implementation specific, check with the PPG
administrator at the carrier you use to send Push Submissions for specific
information.
4. Pass a unique push identification string and at least one subscriber address
to an instance of the PushMessage class.
5. Assemble the desired content using one or more content-type classes:
CacheOperation, CustomContent, ServiceIndication, or ServiceLoading.
6. Set any desired Push Submission options using PushMessage mutator (set)
methods.
7. Pass the PushMessage and assembled content objects to the MimeEntity class.
8. Define the URL of the desired PPG, using the Pusher class.
9. Send the Push Submission by calling the Pusher.send method.
10. Examine the response object to determine specific information about the
immediate status of the Push Submission.
11. Handle any exceptions.
12. Use the appropriate WAP Push Library class to check the status of a Push
Submission, cancel a Push Submission, or initiate a Client Capabilities Query,
respectively StatusQueryMessage, CancelMessage, and CcqMessage.

Sending a Service Indication using the WAP Push Library

This section describes how a WAP application pushes a Service Indication (SI),
commonly called an “alert,” to a mobile device using Openwave WAP Push
Library and the Openwave PPG.

An SI is a short text message that links to a URL on the application server.
Applications push SIs whenever events occur that require user attention, for
example, new email arrival, traffic or weather alerts, stock trade results, or field
service dispatches. When the user selects the SI, the WAP browser fetches the
associated URL, which allows applications to deliver more detailed or
time-sensitive content with the short alert message. In most cases, the device pops
up the alert message or beeps the user when the SI is received. The SI is persistently
stored in the user's inbox so that the user can select it at any time before deleting it
from the inbox.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 31

WAP Push Library Overview
Sending a Push Submission4

Extracting the Addresses and Sending the Push

Here is a code fragment from the Travel service demo application supplied with the
WAP Push Library. The application uses the Openwave WAP Push Library
SimplePush class to send the SI to the user’s mobile device. When the user first visits
the travel service using the WAP browser, the application extracts the client
(device) address and PPG address from the HTTP request header. The application
should save this data for later use in its user profile database.

// Get the client and push proxy gateway address from the
// HTTP request header
subID = request.getHeader("X-Up-Subno");
ppgString = "http://" + request.getHeader("X-Up-Wap-Push-Unsecure");
clientAddress = subID + "/TYPE=USER@ppg.phone.com";
...
// Initialize the alert data and submit the push request
private String alertTitle = "Travel Service";
private String alertURL =

"http://flights.openwave.com/status.wml?ID=4393312";
try
{

pushResponse = sp.pushServiceIndication(new String[] {clientAddress},
"Travel Service: Flight Status Update",
alertURL,
ServiceIndicationAction.signalHigh);

}

32 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Overview
Sending a Push Submission 4

The Push Submission

The WAP Push Library generates a PAP-compliant XML multi-part document
and posts the document to the PPG on behalf of the application. The document
complexities, including encoding, headers, spacing, boundary IDs, and so forth, are
abstracted by the WAP Push Library API, so application developers do not have to
worry about the details:

--plibbgtTtrewZjFtpqoK

Content-type: application/xml; charset=UTF-8

<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 1.0//EN"

"http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap>

<push-message push-id="60767/949/ServiceInd Example">
<address

address-value=
"WAPPUSH=jdoe_devgate.openwave.com/
TYPE=USER@ppg.openwave.com"/>

<quality-of-service priority="high"
delivery-method="unconfirmed"/>

</push-message>
</pap>

--plibbgtTtrewZjFtpqoK

Content-type: text/vnd.wap.si; charset=UTF-8

<?xml version="1.0"?>
<!DOCTYPE si PUBLIC "-//WAPFORUM//DTD SI 1.0//EN"

"http://www.wapforum.org/DTD/si.dtd">
<si>

<indication href="http://flights.openwave.com/status.wml?ID=4393312"
action="signal-high">
Travel Service: Flight Status Update

</indication>
</si>

--plibbgtTtrewZjFtpqoK
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 33

WAP Push Library Overview
Sending a Push Submission4

The SI User Interface

The SI message is presented to the user as soon as the PPG delivers the SI to the
mobile device as shown in Figure 4-2 on page 34. When the user selects View the
alert URL is fetched from the application server and the resulting WML content is
presented. The message is saved in the alert inbox, so the user can select Skip and
view it later. Each time the user selects the SI, the application can deliver an updated
version of the content, so the user always sees the most current information
available.

Figure 4-2. Travel demo SI user display
34 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

5
5SimplePush Class Essentials

This chapter introduces the use of the SimplePush class, which you can use to create
simple Push Application Protocol (PAP) applications quickly. The SimplePush class
consists of a series of methods that encapsulate essential WAP Push Library
functionality, greatly reducing the amount and complexity of code required to
develop PAP applications.

Chapter 6, “WAP Push Library Essentials,”provides details and examples that help
you to create more complex push applications and to have more control over Push
Operations.

Required Import Statements

To develop any application using the WAP Push Library, your code must include
the following statement:

import com.openwave.wappush.*;

You can import specific WAP Push Library classes instead of the entire package, if
desired.

In addition to the WAP Push Library, your applications may require functionality
of the following Java classes:

import java.io.IOException;
import java.io.FileNotFoundException;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.Enumeration;

You may also need to import other Java classes, particularly the Abstract
Windowing Toolkit (AWT), Swing, and event-handling classes, to support the user
interface elements that your application implements.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 35

SimplePush Class Essentials
SimplePush Class Basics5

PPG and Client Addresses

The examples in this chapter depict all PPG and client addresses as hard-coded
constants, in part to show the proper format and in part to make the examples easy
to understand. A much better approach would be to extract the PPG and client
addresses from the HTTP request headers to the PPG or from a user interface. For
more information on the former approach, see “Extracting PPG and Client
Addresses from PPG Headers” on page 23, “Sending a Push Submission” on
page 30, and “Travel Example” on page 65.

SimplePush Class Basics

All applications that use the SimplePush class should perform these operations:

• Instantiate a SimplePush object that contains the PPG address, the name of your
program, and the push identification suffix to use. The latter item helps ensure
that each push identifier is unique

• Send the desired PAP operation using the appropriate SimplePush method

• Read the response returned from the PPG

• Query the response for any desired information

• Handle all exceptions

The following sections provide examples of basic SimplePush applications.
36 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Service Indication Payload Example 5

Service Indication Payload Example

This example demonstrates how to send a Push Submission with a Service
Indication (SI) payload. This content type sends notifications to addressees in an
asynchronous manner. These notifications may, for example, be about new email,
changes in stock price, news headlines, advertising, or reminders of various types.

In its most basic form, an SI contains a short message and a URI specifying a
service. The message is presented to the addressee upon reception. The addressee
has the option of starting the service indicated by the URI immediately or
postponing the SI for later handling. If the addressee postpones the SI, the client
device stores it.

What It Does

The spServiceInd.java file declares two constant fields that define the recipient
address and the URL of the PPG. The public spServiceInd class encapsulates all of
the program’s functionality in three methods:

• The printResults method prints the results of the Push Submission.

• The SubmitMsg method instantiates the SimplePush object, sends the Push
Submission, and handles any exceptions returned from the PPG.

• The main method calls the SubmitMsg method.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications that you write.

A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 37

SimplePush Class Essentials
Service Indication Payload Example5

spServiceInd.java

/*
* Title: SimplePush Service Indication Payload Example
* Description: A basic Push Submission example using a Service
* Indication payload
*/

import java.net.MalformedURLException;
import java.io.IOException;
import com.openwave.wappush.*;

public class spServiceInd {
private final static String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
private final static String[] clientAddress =

{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};
private final static String SvcIndURI =

"http://devgate2.openwave.com/cgi-bin/mailbox.cgi";

private static void printResults(PushResponse pushResponse)
throws WapPushException, MalformedURLException, IOException {
//Read the response to find out if the Push Submission succeded.
//1001 = "Accepted for processing"
if (pushResponse.getResultCode() == 1001) {

try {
String pushID = pushResponse.getPushID();
SimplePush sp = new SimplePush(new

java.net.URL(ppgAddress),
"SampleApp", "/sampleapp");

StatusQueryResponse queryResponse =
sp.queryStatus(pushID, null);

StatusQueryResult queryResult =
queryResponse.getResult(0);

System.out.println("Message status: " +
queryResult.getMessageState());

}
catch (WapPushException exception) {
System.out.println("*** ERROR - WapPushException (" +

exception.getMessage() + ")");
}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - MalformedURLException ("
+ exception.getMessage() + ")");

}
catch (IOException exception) {

System.out.println("*** ERROR - IOException ("
+ exception.getMessage() + ")");

}
}
else

System.out.println("Message failed");
}//printResults
38 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Service Indication Payload Example 5

public void SubmitMsg() throws WapPushException, IOException {
try {

//Instantiate a SimplePush object passing in the PPG URL,
//product name, and PushID suffix, which ensures that the
//PushID is unique.
SimplePush sp = new SimplePush(new

java.net.URL(ppgAddress),
"SampleApp", "/sampleapp");

//Send the Service Indication.
PushResponse response =

sp.pushServiceIndication(clientAddress,
"Mobile Mail: New message!", SvcIndURI,
ServiceIndicationAction.signalHigh);

//Print the response from the PPG.
printResults(response);

}//try
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (IOException exception) {

System.out.println("*** ERROR - IOException ("
+ exception.getMessage() + ")");

}
}//SubmitMsg()

public static void main(String[] args) throws WapPushException,
IOException {
spServiceInd spsi = new spServiceInd();
spsi.SubmitMsg();

}//main
}//class spServiceInd
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 39

SimplePush Class Essentials
Service Indication Payload Example5

How It Works

This simple example declares a class, spServiceInd, in which the recipient address,
the PPG URL, and the SI URI are declared as constants:

private final static String ppgAddress =
"http://devgate2.openwave.com:9002/pap";

private final static String[] clientAddress =
{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};

private final static String SvcIndURI =
"http://devgate2.openwave.com/cgi-bin/mailbox.cgi";

Notice that the clientAddress field is a String array. This is necessary because the
pushCustomContent method requires a String array for its addresses parameter.

The next block defines the private printResults method, which tests the response
object returned from the PPG for information regarding the Push Submission. If
the Push Submission succeeded, this method prints some of the pertinent response
information.

The SubmitMsg method contains the code that builds and sends the Push Submission
and prints the response from the PPG. The first line instantiates a SimplePush
object, passing in the PPG URL, the product name, and the PushID suffix, which
ensures that the push identifier is unique.

SimplePush sp = new SimplePush(new java.net.URL(ppgAddress), "SampleApp",
"/sampleapp");

The second line sends the Push Submission using the SimplePush method that
encapsulates an SI payload. The last line prints the response from the PPG.

PushResponse response =
sp.pushServiceIndication(clientAddress,

"Mobile Mail: New message!", SvcIndURI,
ServiceIndicationAction.signalHigh);

printResults(response);

The preceding lines are enclosed in a try...catch block, allowing the SubmitMsg
method to report and act upon any exceptions that might occur. In this example,
the action taken in response to any exception is to print the contents of the
exceptions to the console.

Finally, the main method instantiates an spServiceInd object and calls the SubmitMsg
method:

spServiceInd spsi = new spServiceInd();
spsi.SubmitMsg();
40 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Service Loading Payload Example 5

Service Loading Payload Example

This example demonstrates how to send a Push Submission with a Service Loading
(SL) payload. This content type causes a user agent on a mobile client to load and
execute a service that, for example, can be in the form of a WML deck. The SL
contains a URI specifying the service that the user agent is to load, with or without
user intervention as appropriate.

This example uses some of the same constants and other code as the previous
examples, but demonstrates another useful payload type.

What It Does

The spServiceLoad.java file declares three constant fields that define the recipient
address, the URL of the PPG, and the SL URI. The public spServiceInd class
encapsulates all of the program’s functionality in three methods:

• The printResults method prints the results of the Push Submission.

• The SubmitMsg method instantiates the SimplePush object, sets Quality of Service
attributes, sends the Push Submission, prints the pertinent information from
the PPG response, and handles any exceptions returned from the PPG.

• The main method calls the SubmitMsg method.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications that you write.

A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 41

SimplePush Class Essentials
Service Loading Payload Example5

spServiceLoad.java

/*
* Title: SimplePush Service Loading Payload Example
* Description: A basic Push Submission example using a Service Loading
* payload
*/

import java.net.MalformedURLException;
import java.io.IOException;
import com.openwave.wappush.*;

public class spServiceLoad {
private final static String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
private final static String[] clientAddress =

{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};
static final String SvcLoadURI =

"http://devgate2.openwave.com/cgi-bin/mailbox.wml";

private static void printResults(PushResponse pushResponse)
throws WapPushException, MalformedURLException, IOException {
//Read the response to find out if the Push Submission succeded.
//1001 = "Accepted for processing"
if (pushResponse.getResultCode() == 1001) {

try {
String pushID = pushResponse.getPushID();
SimplePush sp = new SimplePush(new

java.net.URL(ppgAddress),
"SampleApp", "/sampleapp");

StatusQueryResponse queryResponse =
sp.queryStatus(pushID, null);

StatusQueryResult queryResult =
queryResponse.getResult(0);

System.out.println("Message status: " +
queryResult.getMessageState());

}
catch (WapPushException exception) {
System.out.println("*** ERROR - WapPushException (" +

exception.getMessage() + ")");
}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - MalformedURLException ("
+ exception.getMessage() + ")");

}
catch (IOException exception) {

System.out.println("*** ERROR - IOException ("
+ exception.getMessage() + ")");

}
}
else

System.out.println("Message failed");
}//printResults
42 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Service Loading Payload Example 5

public void SubmitMsg() throws WapPushException, IOException {
try {

//Instantiate a SimplePush object passing in the PPG URL,
//product name, and PushID suffix, which ensures that the
//PushID is unique.
SimplePush sp = new SimplePush(new java.net.URL(ppgAddress),

"SampleApp", "/sampleapp");

//Instantiate a Quality of Service (QOS) object for the Push
//message.
QualityOfService sp_qos = new QualityOfService();

//Set the desired QOS attributes.
sp_qos.setDeliveryMethod(DeliveryMethod.confirmed);
sp_qos.setPriority(DeliveryPriority.high);
sp_qos.setNetwork("GSM");
sp_qos.setNetworkRequired(true);
sp_qos.setBearer("USSD");
sp_qos.setBearerRequired(false);

//Set the QOS for the push message.
sp.setQualityOfService(sp_qos);

//Send the Service Loading.
PushResponse response =

sp.pushServiceLoading(clientAddress, SvcLoadURI,
ServiceLoadingAction.executeHigh);

//Print the response from the PPG.
printResults(response);

}//try
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (IOException exception) {

System.out.println("*** ERROR - IOException ("
+ exception.getMessage() + ")");

}
}//SubmitMsg()

public static void main(String[] args) throws WapPushException,
IOException {
spServiceLoad spsl = new spServiceLoad();
spsl.SubmitMsg();

}//main
}//class spServiceLoad
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 43

SimplePush Class Essentials
Service Loading Payload Example5

How It Works

This simple example declares a class, spServiceLoad, in which the recipient address,
the PPG URL, and the Service Loading URI are declared as constants:

private final static String ppgAddress =
"http://devgate2.openwave.com:9002/pap";

private final static String[] clientAddress =
{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};

static final String SvcLoadURI =
"http://devgate2.openwave.com/cgi-bin/mailbox.wml";

Notice that the clientAddress field is a String array. This is necessary because the
pushServiceLoading method requires a String array for its addresses parameter.

The next block defines the private printResults method, which tests the response
object returned from the PPG for information regarding the Push Submission. If
the Push Submission succeeded, this method prints some of the pertinent response
information.

The SubmitMsg method contains the code that builds and sends the Push Submission
and prints the response from the PPG. The first line instantiates a SimplePush
object, passing in the PPG URL, the product name, and the PushID suffix, which
ensures that the push identifier is unique.

SimplePush sp = new SimplePush(new java.net.URL(ppgAddress), "SampleApp",
"/sampleapp");

The next block of lines instantiates a QualityOfService object, sets a variety of
attributes, and adds them to the push message:

QualityOfService sp_qos = new QualityOfService();

//Set the desired QOS attributes.
sp_qos.setDeliveryMethod(DeliveryMethod.confirmed);
sp_qos.setPriority(DeliveryPriority.high);
sp_qos.setNetwork("GSM");
sp_qos.setNetworkRequired(true);
sp_qos.setBearer("USSD");
sp_qos.setBearerRequired(false);

//Set the QOS for the push message.
sp.setQualityOfService(sp_qos);

See QualityOfService in the accompanying JavaDoc API documentation for more
information.

The next two lines send the Push Submission, using the SimplePush method that
encapsulates an SL payload, and print the response from the PPG.

PushResponse response =
sp.pushServiceLoading(clientAddress, SvcLoadURI,
ServiceLoadingAction.executeHigh);

printResults(response);

The preceding lines are enclosed in a try...catch block, allowing the SubmitMsg
method to report and act upon any exceptions that might occur. In this example,
the action taken in response to any exception is to print the contents of the
exceptions to the console.
44 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Cache Operation Payload Example 5

Finally, the main method instantiates an spServiceLoad object and calls the
SubmitMsg method:

spServiceLoad spsl = new spServiceLoad();
spsl.SubmitMsg();

Cache Operation Payload Example

This example demonstrates how to send a Push Submission with a Cache
Operation payload. This content type invalidates content objects in the user agent
cache. All invalidated content objects must be reloaded from the server on which
they originated the next time they are accessed. This example demonstrates the
essentials of building and sending a Push Submission using the SimplePush class.

This example uses some of the same constants and other code as the previous
examples.

What It Does

The spCacheOp.java file declares two constant fields that define the recipient
address and the URL of the PPG. The public spCacheOp class encapsulates all of the
program’s functionality in three methods:

• The printResults method prints the results of the Push Submission.

• The SubmitMsg method instantiates the SimplePush object, sends the Push
Submission, and handles any exceptions returned from the PPG.

• The main method calls the SubmitMsg method.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications that you write.

A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 45

SimplePush Class Essentials
Cache Operation Payload Example5

spCacheOp.java

/*
* Title: SimplePush Cache Operation Payload Example
* Description: A basic Push Submission example using a Cache Operation
* payload
*/

import java.net.MalformedURLException;
import java.io.IOException;
import com.openwave.wappush.*;

public class spCacheOp {
private final static String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
private final static String[] clientAddress =

{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};

private static void printResults(PushResponse pushResponse)
throws WapPushException, MalformedURLException, IOException {
//Read the response to find out if the Push Submission succeded.
//1001 = "Accepted for processing"
if (pushResponse.getResultCode() == 1001) {

try {
String pushID = pushResponse.getPushID();
SimplePush sp = new SimplePush(new

java.net.URL(ppgAddress),
"SampleApp", "/sampleapp");

StatusQueryResponse queryResponse =
sp.queryStatus(pushID, null);

StatusQueryResult queryResult =
queryResponse.getResult(0);

System.out.println("Message status: " +
queryResult.getMessageState());

}
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - MalformedURLException ("
+ exception.getMessage() + ")");

}
catch (IOException exception) {

System.out.println("*** ERROR - IOException ("
+ exception.getMessage() + ")");

}
}
else

System.out.println("Message failed");
}//printResults

public void SubmitMsg() throws WapPushException, IOException {
try {
46 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Cache Operation Payload Example 5

//Instantiate a SimplePush object passing in the PPG URL,
//product name, and PushID suffix, which ensures that the
//PushID is unique.
SimplePush sp = new SimplePush(new java.net.URL(ppgAddress),

"SampleApp", "/sampleapp");
//Send the Cache Operation message.
PushResponse response = sp.pushCacheOperation(clientAddress,

CacheOperationType.cachedService,
"http://www.transitel.net/wap");

//Print the response from the PPG.
printResults(response);

}//try
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (IOException exception) {

System.out.println("*** ERROR - IOException ("
+ exception.getMessage() + ")");

}
}//SubmitMsg()

public static void main(String[] args) throws WapPushException,
IOException {
spCacheOp spco = new spCacheOp();
spco.SubmitMsg();

}//main
}//class spCacheOp
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 47

SimplePush Class Essentials
Cache Operation Payload Example5

How It Works

This simple example declares a class, spCacheOp, in which the recipient address and
the PPG URL are declared as constants:

private final static String ppgAddress =
"http://devgate2.openwave.com:9002/pap";

private final static String[] clientAddress =
{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};

Notice that the clientAddress field is a String array. This is necessary because the
pushCacheOperation method requires a String array for its addresses parameter.

The next block defines the private printResults method, which tests the response
object returned from the PPG for information regarding the Push Submission. If
the Push Submission succeeded, this method prints some of the pertinent response
information.

The SubmitMsg method contains the code that builds and sends the Push Submission
and prints the response from the PPG. The first line instantiates a SimplePush
object, passing in the PPG URL, the product name, and the PushID suffix, which
ensures that the push identifier is unique.

SimplePush sp = new SimplePush(new java.net.URL(ppgAddress), "SampleApp",
"/sampleapp");

The second line sends the Push Submission using the SimplePush method that
encapsulates a Cache Operation payload. The last line prints the response from the
PPG.

PushResponse response = sp.pushCacheOperation(clientAddress,
CacheOperationType.cachedService, "http://www.transitel.net/wap");

printResults(response);

The preceding lines are enclosed in a try...catch block, allowing the SubmitMsg
method to report and act upon any exceptions that might occur. In this example,
the action taken in response to any exception is to print the contents of the
exceptions to the console.

Finally, the main method instantiates an spCacheOp object and calls the SubmitMsg
method:

spCacheOp spco = new spCacheOp();
spco.SubmitMsg();
48 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Custom Content Payload Example 5

Custom Content Payload Example

This example demonstrates how to send a Push Submission with a Custom
Content payload. This content type can contain virtually any type of content. This
example demonstrates the essentials of building and sending a Push Submission.

This example uses some of the same constants and other code as the previous
examples.

What It Does

The spCustomContent.java file declares two constant fields that define the recipient
address and the URL of the PPG. The public spCustomContent class encapsulates all
of the program’s functionality in three methods:

• The printResults method prints the results of the Push Submission.

• The SubmitMsg method instantiates the SimplePush object, sends the Push
Submission, and handles any exceptions returned from the PPG.

• The main method calls the SubmitMsg method.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications that you write.

A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 49

SimplePush Class Essentials
Custom Content Payload Example5

spCustomContent.java

/*
* Title: SimplePush Custom Content Payload Example
* Description: A basic Push Submission example using a Custom Content
* payload
*/

import java.net.MalformedURLException;
import java.io.IOException;
import com.openwave.wappush.*;

public class spCustomContent {
private final static String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
private final static String[] clientAddress =

{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};

private static void printResults(PushResponse pushResponse)
throws WapPushException, MalformedURLException, IOException {
//Read the response to find out if the Push Submission succeded.
//1001 = "Accepted for processing"
if (pushResponse.getResultCode() == 1001) {

try {
String pushID = pushResponse.getPushID();
SimplePush sp = new SimplePush(new

java.net.URL(ppgAddress),
"SampleApp", "/sampleapp");

StatusQueryResponse queryResponse =
sp.queryStatus(pushID, null);

StatusQueryResult queryResult =
queryResponse.getResult(0);

System.out.println("Message status: " +
queryResult.getMessageState());

}
catch (WapPushException exception) {
System.out.println("*** ERROR - WapPushException (" +

exception.getMessage() + ")");
}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - MalformedURLException ("
+ exception.getMessage() + ")");

}
catch (IOException exception) {

System.out.println("*** ERROR - IOException ("
+ exception.getMessage() + ")");

}
}
else

System.out.println("Message failed");
}//printResults

public void SubmitMsg() throws WapPushException,
UnknownMediaTypeException {
50 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Custom Content Payload Example 5

try {
//Instantiate a SimplePush object passing in the PPG URL,
//product name, and PushID suffix, which ensures that the
//PushID is unique.
SimplePush sp = new SimplePush(new java.net.URL(ppgAddress),

"SampleApp", "/sampleapp");
//Send the Custom Content payload.
PushResponse response = sp.pushCustomContent(clientAddress,

"Happy Birthday!!", "text/plain");

//Print the response from the PPG.
printResults(response);

}//try
catch (IOException exception) {

System.out.println("*** ERROR - IOException ("
+ exception.getMessage() + ")");

}
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
}//SubmitMsg()

public static void main(String[] args) throws WapPushException,
UnknownMediaTypeException {
spCustomContent spcc = new spCustomContent();
spcc.SubmitMsg();

}//main
}//class spCustomContent
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 51

SimplePush Class Essentials
Custom Content Payload Example5

How It Works

This simple example declares a class, spCustomContent, in which the recipient
address and the PPG URL are declared as constants:

private final static String ppgAddress =
"http://devgate2.openwave.com:9002/pap";

private final static String[] clientAddress =
{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};

Notice that the clientAddress field is a String array. This is necessary because the
pushCustomContent method requires a String array for its addresses parameter.

The next block defines the private printResults method, which tests the response
object returned from the PPG for information regarding the Push Submission. If
the Push Submission succeeded, this method prints some of the pertinent response
information.

The SubmitMsg method contains the code that builds and sends the Push Submission
and prints the response from the PPG. The first line instantiates a SimplePush
object, passing in the PPG URL, the product name, and the PushID suffix, which
ensures that the push identifier is unique.

SimplePush sp = new SimplePush(new java.net.URL(ppgAddress), "SampleApp",
"/sampleapp");

The second line sends the Push Submission using the SimplePush method that
encapsulates a Custom Content payload. The last line prints the response from the
PPG.

PushResponse response = sp.pushCustomContent(clientAddress,
"Happy Birthday!!", “text/plain”);

printResults(response);

The preceding lines are enclosed in a try...catch block, allowing the SubmitMsg
method to report and act upon any exceptions that might occur. In this example,
the action taken in response to any exception is to print the contents of the
exceptions to the console.

Finally, the main method instantiates an spCustomContent object and calls the
SubmitMsg method:

spCustomContent spcc = new spCustomContent();
spcc.SubmitMsg();
52 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Status Query Message and Response Example 5

Status Query Message and Response Example

This example demonstrates how to send a Status Query message, which requests
the current status of a Push Submission from the PPG. In addition to the standard
numeric code and text message, the Push Status Query response also contains an
attribute that indicates the status of the specified Push Submission. Nine message
states are currently specified:

• aborted The addressee aborted the message.

• cancelled A Push Cancellation successfully canceled the message.

• delivered The PPG successfully delivered the message to the addressee.

• expired The message reached the maximum age allowed by PPG policy or
could not be delivered by the time specified in the Push Submission.

• pending The PPG accepted the message and is in the process of delivering it.

• rejected The addressee rejected the message.

• timeout The delivery process timed out on the PPG.

• undeliverable A problem prevented delivery of the message. Call the
StatusQueryResult.getCode and StatusQueryResult.getDesc methods to retrieve
the code and text message returned from the PPG.

• unknown The PPG has no information about the status of the message.

See WAP Push Access Protocol for definitions of the numeric codes and
accompanying text messages.

NOTE PPG implementation of Status Query reporting is optional. If the PPG
does not support Status Query reporting, the response contains status code
3001 with the text message Not Implemented.

What It Does

The spStatusQM.java file declares three constant fields that define the specific
addressee for which to retrieve status information, the URL of the PPG, and the
unique identifier of the Push Submission for which to retrieve status information.
The public spStatusQM class encapsulates all of the program’s functionality in three
methods:

• The printStatusQueryResponse method prints the results of the Status Query
operation.

• The SubmitMsg method instantiates the SimplePush object, sends the Status
Query message, prints the results, and handles any exceptions returned from
the PPG.

• The main method calls the SubmitMsg method.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications that you write.

A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 53

SimplePush Class Essentials
Status Query Message and Response Example5

spStatusQM.java

/*
* Title: SimplePush Status Query Message Example
* Description: A basic Push Submission example that sends a
* Status Query message and reports the results
*/

import java.net.MalformedURLException;
import java.io.IOException;
import com.openwave.wappush.*;

public class spStatusQM {
private final static String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
private final static String[] clientAddress =

{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};
private final static String pushID = "9f1000a021@openwave.com";

//Private method that prints the response information.
private static void printStatusQueryResponse (StatusQueryResponse

response) {
System.out.println("StatusQueryResponse");
System.out.println(" push-id = " + response.getPushID());
int resultCount = response.getResultCount();
System.out.println(" result-count = " + resultCount);
for (int i = 0; i < resultCount; ++i) {

System.out.println(" result #" + i);
StatusQueryResult result = response.getResult(i);
MessageState mState = result.getMessageState();
System.out.println(" message-state = " +

mState.toString());
System.out.println(" code = " +

result.getCode());
System.out.println(" description = " +

result.getDesc());
DateTime dt = result.getEventTime();
System.out.println(" event-time = " +

dt.toString());
int addressCount = result.getAddressCount();
System.out.println(" address-count = " +

addressCount);

for (int j = 0; j < addressCount; ++j) {
System.out.println(" address #" + j +

" = " + result.getAddress(j));
}

}
}//printStatusQueryResponse

public void SubmitMsg() throws WapPushException, IOException {
try {

//Instantiate a SimplePush object passing in the PPG URL,
//product name, and PushID suffix, which ensures that the
54 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Status Query Message and Response Example 5

//PushID is unique.
SimplePush sp = new SimplePush(new java.net.URL(ppgAddress),

"SampleApp", "/sampleapp");

//Send the Status Query message.
StatusQueryResponse response =

sp.queryStatus(pushID, clientAddress);

//Print the response from the PPG.
printStatusQueryResponse(response);

}//try
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (IOException exception) {

System.out.println("*** ERROR - IOException ("
+ exception.getMessage() + ")");

}
}//SubmitMsg()

public static void main(String[] args) throws WapPushException,
IOException {
spStatusQM spsqm = new spStatusQM();
spsqm.SubmitMsg();

}//main
}//class spStatusQM
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 55

SimplePush Class Essentials
Status Query Message and Response Example5

How It Works

This simple example declares a class, spStatusQM, in which the recipient address, the
PPG URL, and the unique identifier of the Push Submission for which to retrieve
status information are declared as constants:

private final static String ppgAddress =
"http://devgate2.openwave.com:9002/pap";

private final static String[] clientAddress =
{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};

private final static String pushID = "9f1000a021@openwave.com";

Notice that the clientAddress field is a String array. This is necessary because the
queryStatus method requires a String array for its addresses parameter.

The next block defines the private printStatusQueryResponse method, which tests
the response object returned from the PPG for information regarding the Status
Query operation.

The SubmitMsg method contains the code that builds and sends the Status Query
message and prints the response from the PPG. The first line instantiates a
SimplePush object, passing in the PPG URL, the product name, and the PushID
suffix, which ensures that the push identifier is unique.

SimplePush sp = new SimplePush(new java.net.URL(ppgAddress), "SampleApp",
"/sampleapp");

The next two lines send the Status Query message, using the SimplePush method
that encapsulates a Status Query operation, and print the response from the PPG.

StatusQueryResponse response = sp.queryStatus(pushID, clientAddress);
printStatusQueryResponse(response);

The preceding lines are enclosed in a try...catch block, allowing the SubmitMsg
method to report and act upon any exceptions that might occur. In this example,
the action taken in response to any exception is to print the contents of the
exceptions to the console.

Finally, the main method instantiates an spStatusQM object and calls the SubmitMsg
method:

spStatusQM spsqm = new spStatusQM();
spsqm.SubmitMsg();
56 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Push Cancel Message and Response Example 5

Push Cancel Message and Response Example

This example demonstrates how to send a Push Cancellation, which allows the
push initiator to attempt to cancel a Push Submission, and how to read the
response from the PPG, which indicates the status of the cancellation request. A
Push Submission can be canceled only before it has been delivered.

PPG support for the Push Cancellation operation is optional. If the PPG does not
support Push Cancellation, the response contains status code 3001 with the text
message Not Implemented.

What It Does

The spCancelPush.java file declares three constant fields that define the recipient
address, the URL of the PPG, and the unique identifier of the Push Submission to
cancel. In this example, the Push Cancellation operation attempts to cancel the
specified Push Submission for one addressee only. The public spCancelPush class
encapsulates all of the program’s functionality in three methods:

• The printCancelResponse method prints the results of the Push Cancellation
operation.

• The SubmitMsg method instantiates the SimplePush object, sends the Cancel
message, prints the pertinent information from the PPG response, and handles
any exceptions returned from the PPG.

• The main method calls the SubmitMsg method.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications that you write.

A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 57

SimplePush Class Essentials
Push Cancel Message and Response Example5

spCancelPush.java

/*
* Title: SimplePush Push Cancellation Example
* Description: A basic Push Submission example that cancels a
* push message.
*/

import java.net.MalformedURLException;
import java.io.IOException;
import com.openwave.wappush.*;

public class spCancelPush {
private final static String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
private final static String[] clientAddress =

{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};
private final static String pushID = "9f1000a021@openwave.com";

private static void printCancelResponse(CancelResponse
cancelResponse) {
System.out.println("CancelResponse");
System.out.println(" push-id = " + cancelResponse.getPushID());
int resultCount = cancelResponse.getResultCount();
System.out.println(" result-count = " + resultCount);
for (int i = 0; i < resultCount; ++i) {

System.out.println(" result #" + i);
CancelResult result = cancelResponse.getResult(i);
System.out.println(" code = " + result.getCode());
System.out.println(" description = " + result.getDesc());
int addressCount = result.getAddressCount();
System.out.println(" address-count = " + addressCount);
for (int j = 0; j < addressCount; ++j) {

System.out.println(" address #" + j + " = " +
result.getAddress(j));

}
}

}//printCancelResponse

public void SubmitMsg() throws WapPushException, IOException {
try {

//Instantiate a SimplePush object passing in the PPG URL,
//product name, and PushID suffix, which ensures that the
//PushID is unique.
SimplePush sp = new SimplePush(new java.net.URL(ppgAddress),

"SampleApp", "/sampleapp");

//Send the Cancel message.
CancelResponse response =

sp.cancel(pushID, clientAddress);

//Print the response from the PPG.
printCancelResponse(response);

}//try
58 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Push Cancel Message and Response Example 5

catch (WapPushException exception) {
System.out.println("*** ERROR - WapPushException (" +

exception.getMessage() + ")");
}
catch (IOException exception) {

System.out.println("*** ERROR - IOException ("
+ exception.getMessage() + ")");

}
}//SubmitMsg()

public static void main(String[] args) throws WapPushException,
IOException {
spCancelPush spcp = new spCancelPush();
spcp.SubmitMsg();

}//main
}//class spCancelPush
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 59

SimplePush Class Essentials
Push Cancel Message and Response Example5

How It Works

This simple example declares a class, spCancelPush, in which the recipient address,
the PPG URL, and the unique identifier of the Push Submission to cancel are
declared as constants:

private final static String ppgAddress =
"http://devgate2.openwave.com:9002/pap";

private final static String[] clientAddress =
{"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com"};

private final static String pushID = "9f1000a021@openwave.com";

Notice that the clientAddress field is a String array. This is necessary because the
cancel method requires a String array for its addresses parameter.

The next block defines the private printCancelResponse method, which tests the
response object returned from the PPG for information regarding the Cancel
operation.

The SubmitMsg method contains the code that builds and sends the Cancel message
and prints the response from the PPG. The first line instantiates a SimplePush
object, passing in the PPG URL, the product name, and the PushID suffix, which
ensures that the push identifier is unique.

SimplePush sp = new SimplePush(new java.net.URL(ppgAddress), "SampleApp",
"/sampleapp");

The next two lines send the Cancel message, using the SimplePush method that
encapsulates a Push Cancellation operation, and print the response from the PPG.

sp.cancel(pushID, clientAddress);
printCancelResponse(response);

The preceding lines are enclosed in a try...catch block, allowing the SubmitMsg
method to report and act upon any exceptions that might occur. In this example,
the action taken in response to any exception is to print the contents of the
exceptions to the console.

Finally, the main method instantiates an spCancelPush object and calls the SubmitMsg
method:

spCancelPush spcp = new spCancelPush();
spcp.SubmitMsg();
60 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Client Capabilities Query Message and Response Example 5

Client Capabilities Query Message and Response Example

This example demonstrates how to send a Client Capabilities Query (CCQ)
message, which requests the capabilities for a specific client device from the PPG. A
CCQ response also includes a complete User Agent Profile (UAProf), which
provides detailed information about the specified client device.

NOTE PPG implementation of Client Capabilities Query reporting is optional.
If the PPG does not support CCQ reporting, the response contains status code
3001 with the text message Not Implemented.

What It Does

The spClientCaps.java file declares two constant fields that define the specific
addressee for which to retrieve CCQ information and the URL of the PPG. The
public spClientCaps class encapsulates all of the program’s functionality in four
methods:

• The printCCQResponse and printUAProfile methods print client capabilities and
UAProf information resulting from the CCQ operation.

• The SubmitMsg method instantiates the SimplePush object, sends the CCQ
message, prints the results, and handles any exceptions returned from the PPG.

• The main method calls the SubmitMsg method.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications that you write.
A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 61

SimplePush Class Essentials
Client Capabilities Query Message and Response Example5

spClientCaps.java

/*
* Title: SimplePush Client Capabilities Query Message Example
* Description: A basic Push Submission example that sends a
* Client Capabilities Query message
*/

import java.net.MalformedURLException;
import java.io.IOException;
import java.util.Enumeration;
import java.net.URL;
import com.openwave.wappush.*;

public class spClientCaps {
private final static String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
private final static String clientAddress =

"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com";

//Private methods that print the response information.
private static void printCCQResponse(CcqResponse response) {

System.out.println("ClientCapsQueryResponse");
System.out.println(" result-code = " + response.getCode());
System.out.println(" result-description = " +

response.getDesc());
System.out.println(" query-id = " + response.getQueryID());
System.out.println(" address = " + response.getAddress());
UAProfile profile = response.getUserAgentProfile();
if (profile == null)

System.out.println("UAProfile = null");
else

printUAProfile(profile);
}//printCCQResponse

private static void printUAProfile (UAProfile profile) {
System.out.println("UAProfile");
int compCount = profile.componentCount();
System.out.println(" profile-id = " + profile.getID());
System.out.println(" component-count = " + compCount);
for (int i = 0; i < compCount; ++i) {

UAComponent comp = profile.getComponent(i);
System.out.println(" component #" + i);
System.out.println(" component-id = " +

comp.getID());
System.out.print(" defaults-resource = ");
try {

URL defaultsURL = comp.getDefaultsResource();
System.out.println(defaultsURL);

}
catch (Exception e) {

System.out.println("**malformed URL**");
}
System.out.print(" schema-resource = ");
62 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Client Capabilities Query Message and Response Example 5

try {
URL schemaURL = comp.getSchemaResource();
System.out.println(schemaURL);

}
catch (Exception e) {

System.out.println("**malformed URL**");
}

Enumeration attNames = comp.getAttributeNames();
while (attNames.hasMoreElements()) {

String attName = (String) attNames.nextElement();
System.out.println(" " + attName + " = ");
Enumeration attValues = comp.getAllValuesOf(attName);
while (attValues.hasMoreElements()) {

Object attValue = attValues.nextElement();
if (attValue instanceof Bag) {

Bag bag = (Bag) attValue;
int itemCount = bag.count();
System.out.print(" (");
for (int j = 0; j < itemCount; ++j) {

if (j != 0)
System.out.print(", ");

System.out.print(bag.get(j));
}
System.out.println(")");

}
else
System.out.println(" " + attValue);

}
}

}
}//printUAProf

public void SubmitMsg() throws WapPushException, IOException {
try {

//Instantiate a SimplePush object passing in the PPG URL,
//product name, and PushID suffix, which ensures that the
//PushID is unique.
SimplePush sp = new SimplePush(new java.net.URL(ppgAddress),

"SampleApp", "/sampleapp");

//Send the CCQ message.
CcqResponse response = sp.queryCapabilities(clientAddress,

null);

//Print the response from the PPG.
printCCQResponse(response);

}//try
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (IOException exception) {
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 63

SimplePush Class Essentials
Client Capabilities Query Message and Response Example5

System.out.println("*** ERROR - IOException ("
+ exception.getMessage() + ")");

}
}//SubmitMsg()

public static void main(String[] args) throws WapPushException,
IOException {
spClientCaps spccq = new spClientCaps();
spccq.SubmitMsg();

}//main
}//class spClientCaps

How It Works

This simple example declares a class, spClientCaps, in which the PPG URL and
recipient address for which to retrieve capabilities information are declared as
constants:

private final static String ppgAddress =
"http://devgate2.openwave.com:9002/pap";

private final static String clientAddress =
"jdoe_devgate2.openwave.com/TYPE=USER@ppg.openwave.com";

The next block defines the private printCCQResponse and printUAProfile methods,
which print client capabilities and UAProf information resulting from the CCQ
operation

The SubmitMsg method contains the code that builds and sends the CCQ message
and prints the response from the PPG. The first line instantiates a SimplePush
object, passing in the PPG URL, the product name, and the PushID suffix, which
ensures that the push identifier is unique.

SimplePush sp = new SimplePush(new java.net.URL(ppgAddress), "SampleApp",
"/sampleapp");

The next two lines send the CCQ message, using the SimplePush method that
encapsulates a CCQ operation, and print the response from the PPG.

CcqResponse response = sp.queryCapabilities(clientAddress, null);
printCCQResponse(response);

The preceding lines are enclosed in a try...catch block, allowing the SubmitMsg
method to report and act upon any exceptions that might occur. In this example,
the action taken in response to any exception is to print the contents of the
exceptions to the console.

Finally, the main method instantiates an spClientCaps object and calls the SubmitMsg
method:

spClientCaps spccq = new spClientCaps();
spccq.SubmitMsg();
64 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Travel Example 5

Travel Example

The Travel example is based on and integrated with a collection of more than 20
WML files and one WMLScript file. This example which presents an Openwave
Mobile Browser user with a wireless air application, in which the user can reserve
and check the status of flights. The SimplePush portion of the Travel example is
integrated into the section of the application that allows users to check flight status.
In this example, a flight has a 50-50 chance of being canceled or delayed.

What It Does

The Travel example illustrates all PAP operations except Push Cancellation, Client
Capabilities Query, and Result Notification. PAP operations are mapped to user
scenarios as follows:

• When a user requests notification of flight status changes and the flight is
canceled, a Service Loading Push is sent to the user.

• When a user requests notification of flight status changes and the flight is
delayed, the following sequence of events occurs:
❍ A Service Indication is sent to the user notifying the user of the delay, with

a flight status URL as the Service Indication URI.
❍ A period of time elapses and then the example code generates a second

flight delay.
❍ The Travel example sends a Status Query message to determine the state of

the first Service Indication.
❍ If the first Service Indication has been delivered, the Travel example sends a

Cache Operation message to invalidate the flight status URL in the user’s
cache.

❍ The Travel example then sends a second Service Indication to the user with
the same flight status URL as the first Service Indication URI. The flight
status URL now informs the user of a different departure time because the
previous step invalidated the user’s cache.

To run the Travel example, use the Openwave Simulator to open the travel2.wml
file in the <installroot>/examples/TravelDemo/source/wml directory. For more
information on installing and configuring the WAP Push Library and associated
utilities and examples, see “Installing and Configuring” on page 15.

The Travel example consists of two Java servlets, which are integrated into the
Travel example by means of a slight modification of a single WML file
(statfltnum.wml). The FlightStatus servlet is not called directly from the Travel
example, but rather is only used as the target URI for Service Loading and Service
Indication push messages. The FlightStatus servlet generates a WML deck that
informs the user of a flight cancellation or of the new departure time in the event of
a delay. The FlightStatus servlet does not use the Push Library, so it is not covered
in detail here. For more information on the FlightStatus servlet, open the
FlightStatus.java file in the examples/TravelDemo/src/java directory. The source
file contains extensive comments.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 65

SimplePush Class Essentials
Travel Example5

The TravelServer servlet, which is covered in this chapter, is called from
statfltnum.wml when the user presses the Notify Me of Changes button. The
servlet then performs the sequence of events just outlined.

A complete code listing of the TravelServer.java servlet follows.

TravelServer.java

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;
import com.openwave.wappush.CacheOperationType;
import com.openwave.wappush.DeliveryMethod;
import com.openwave.wappush.PushResponse;
import com.openwave.wappush.ServiceLoadingAction;
import com.openwave.wappush.ServiceIndicationAction;
import com.openwave.wappush.SimplePush;
import com.openwave.wappush.StatusQueryResponse;
import com.openwave.wappush.StatusQueryResult;
import com.openwave.wappush.WapPushException;

public class TravelServer extends HttpServlet
{

/**
* Parameters supplied by the "get" request from the WML deck.
*/
private String subID = null;
private String Airline = null;
private String Flight = null;

/**
* Internal variables.
 */
private String ppgString = null;
private String clientAddress = null;
private String alertURL = null;

/**
* One hour in milliseconds.
*/
static final int millisPerHour = 60 * 60 * 1000;

/*
* Set this to true to get debugging messages in the Tomcat console
* window and log.
*/
static final boolean debug = true;

/**
66 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Travel Example 5

* Initializes the servlet.
*/
public void init(ServletConfig config) throws ServletException
{

super.init(config);
}

/**
* Destroys the servlet.
*/
public void destroy()
{

;//Do nothing.
}

/**
* Handles the HTTP <code>GET</code> method.
* @param request servlet request
* @param response servlet response
*
* The response is handled by the Service Indication to the PPG.
*/
protected synchronized void
doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, java.io.IOException
{

int tokType;

if (request.getParameter("notify").equalsIgnoreCase("no"))
{

// User didn’t request flight status notification, so just
// redirect user to home page.
response.sendRedirect("/travel/travel2.wml");
response.flushBuffer();
return;

}

if (request.getHeader("X-Up-Wap-Push-Unsecure" == null)
{

// The phone is in direct mode, so this example will not work.
// Warn the user and exit.
response.sendRedirect("/travel/nohttpdirect.wml");
response.flushBuffer();
return;

}

/**
* Output a simple WML deck and flush the buffer. This closes the
* connection to the Mobile Browser, allowing subsequent pushes
* to be displayed immediately. If this is not done, the
* connection between the servlet and the Mobile Browser remains
* open until the servlet terminates, and no pushes
* can be delivered to the Mobile Browser until that occurs.
*/
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 67

SimplePush Class Essentials
Travel Example5

response.sendRedirect("/travel/notifychange.wml");
response.flushBuffer();

/**
* Get parameter from the get request.
*
* @param subID - the subscriber’s ID
* @param Airline - the name of the Airline
* @param Flight - the flight number
* @param ppgString - the address of the PPG
*/

subID = request.getHeader("X-Up-Subno");
Airline = request.getParameter("airline");
Flight = request.getParameter("flight");
ppgString = "http://" +

request.getHeader("X-Up-Wap-Push-Unsecure");
/*
* Create the full client address.
*/

clientAddress = subID + "/TYPE=USER@ppg.phone.com";

/**
* If any of the params are null, just return.
*/

if(Airline == null || Flight == null)
{

return;
}

//This yields a value like
//http://loki.phone.com:8080/travel/FlightStatus
alertURL = request.getScheme() + "://" + request.getServerName()

+ ":" + request.getServerPort()
+ "/travel/servlet/FlightStatus?airline="+Airline+"&
flight="+Flight;

if(debug)
{

System.out.println("subID = "+subID+"\nPPG =
"+ppgString+"\nairline = "+Airline+ "\nflight =
"+Flight);

System.out.flush();
}

URL ppgURL = null;

try
{

ppgURL = new URL(ppgString);
}
catch (MalformedURLException e)
{

System.err.println(e.toString());
System.exit(-1);
68 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Travel Example 5

}

SimplePush sp = new SimplePush(ppgURL, "TravelDemo",
"/TravelDemo");

sp.setQualityOfService(null, DeliveryMethod.confirmed, null,
false, null, false);

PushResponse pushResponse = null;

// 50-50 chance of a delay or a cancellation.
if(Math.random() > 0.5)
{

//Cancellation
alertURL += "&cancelled=cancelled";
try
{

pushResponse = sp.pushServiceLoading(new String[]
{clientAddress}, alertURL,
ServiceLoadingAction.executeHigh);

}
catch (WapPushException e)
{

System.err.println(e.toString());
System.exit(-1);

}
catch (IOException e)
}

System.err.println(e.toString());
System.exit(-1);

}
}
else
{

//Delays (plural)
try
{

pushResponse = sp.pushServiceIndication(new String[]
{clientAddress},
"Travel Service: Flight Status Update",
alertURL,
ServiceIndicationAction.signalHigh);

}
catch (WapPushException e)
{

System.err.println(e.toString());
System.exit(-1);

}
catch (IOException e)
}

System.err.println(e.toString());
System.exit(-1);

}
//Now sit idle for 10 seconds before issuing another delay.
//For purposes on this demo, wait only 10 seconds just to
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 69

SimplePush Class Essentials
Travel Example5

//keep things moving.
int sleepTime = 10; // Wait for 10 seconds.
try
{

wait(sleepTime * 1000);
}
catch (Exception exception)
{

System.out.println("Exception during wait: " +
exception.getMessage());

}

//Has the previous Alert been delivered?
StatusQueryResponse statusResponse = null;

try
{

statusResponse = sp.queryStatus(pushResponse.getPushID(),
new String[] {clientAddress});

}
catch (WapPushException e)
{

System.err.println(e.toString());
System.exit(-1);

}
catch (IOException e)
}

System.err.println(e.toString());
System.exit(-1);

}

//Now check to see if the message has already been delivered.
//Do a very simple check here. You could be more elegant and
//actually parse the response string.
//If the push message has been delivered, send a CacheOp
//to invalidate the previous push message.
StatusQueryResult sqResult = statusResponse.getResult(0);

if (sqResult != null &&
sqResult.getMessageState().equals("delivered"))

{
try
{

pushResponse = sp.pushCacheOperation(new String[]
{clientAddress},
CacheOperationType.cachedService, alertURL);

}
catch (WapPushException e)
{

System.err.println(e.toString());
System.exit(-1);

}
catch (IOException e)
}

70 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Travel Example 5

System.err.println(e.toString());
System.exit(-1);

}
}

//If it has been delivered, this Alert replaces it.
try
{

pushResponse = sp.pushServiceIndication(new String[]
{clientAddress},
"Travel Service: Flight Status Update",
alertURL,
ServiceIndicationAction.signalHigh);

}
catch (WapPushException e)
{

System.err.println(e.toString());
System.exit(-1);

}
catch (IOException e)
}

System.err.println(e.toString());
System.exit(-1);

}
}

}
}

/**
* Handles the HTTP <code>POST</code> method.
* @param request servlet request
* @param response servlet response
*/
protected void doPost(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, java.io.IOException

{
;//Do nothing.

}

/**
* Returns a short description of the servlet.
*/
public String getServletInfo()
{

return "Short description";
}

}//TravelServer.java
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 71

SimplePush Class Essentials
Travel Example5

How It Works

NOTE Only those portions of the TravelServer servlet that are based on the
SimplePush class are described in detail.

This example begins with several import statements, declares the TravelServer class,
declares and initializes a series of parameters and variables, and declares the Servlet
initialization and destruction methods.

The first section of the doGet method checks to see if the user requested flight status
notification and if the mobile browser or SDK is in HTTP direct mode. If the user
did not request flight status notification, the Travel Demo home page appears on
the mobile browser:

if (request.getParameter("notify").equalsIgnoreCase("no"))
{

// User didn’t request flight status notification, so just
// redirect user to home page.
response.sendRedirect("/travel/travel2.wml");
response.flushBuffer();
return;

}

If the mobile browser or SDK is in HTTP direct mode, it cannot receive push
messages. In that case, the user receives a notification in the form of a WML deck
and the Travel Demo closes:

if (request.getHeader("X-Up-Wap-Push-Unsecure" == null)
{

// The phone is in direct mode, so this example will not work.
// Warn the user and exit.
response.sendRedirect("/travel/nohttpdirect.wml");
response.flushBuffer();
return;

}

The next section of the doGet method extracts a series of parameters that are needed
for the various Push Submissions, including the subscriber ID and PPG address
from the HTTP headers.

The method then instantiates the SimplePush object it will use throughout, sets the
confirmed delivery Quality of Service attribute for all of the Push Submissions, and
initializes a PushResponse object to hold the response messages from the PPG:

SimplePush sp = new SimplePush(ppgURL, "TravelDemo",
"/TravelDemo");

sp.setQualityOfService(null, DeliveryMethod.confirmed, null,
false, null, false);
PushResponse pushResponse = null;

The ppgURL parameter is derived from the HTTP headers in an earlier section of the
method.

The method then uses a random number generator to determine whether the flight
has been canceled or delayed. The results of this step control the Push Submissions
issued later.
72 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Travel Example 5

The next section of the doGet method is broken into a series of try...catch blocks
that perform the Push Submissions using the SimplePush class. These blocks are
described next.

The first try...catch block uses the SimplePush method that sends a Service
Loading message to inform the user of a canceled flight. The clientAddress
parameter is derived from the HTTP headers in an earlier section of the method.
The remainder of this block catches any exceptions, prints the corresponding
message, and exits the program:

if(Math.random() > 0.5)
{

//Cancellation
alertURL += "&cancelled=cancelled";
try
{

pushResponse = sp.pushServiceLoading(new String[]
{clientAddress}, alertURL,
ServiceLoadingAction.executeHigh);

}
catch (WapPushException e)
{

System.err.println(e.toString());
System.exit(-1);

}
catch (IOException e)
}

System.err.println(e.toString());
System.exit(-1);

}
}

The next two try...catch blocks are activated when the random number generator
produces a delay instead of a cancellation. The first block sends a Service Indication
to inform the user of the delayed flight. The clientAddress parameter is derived
from the HTTP headers in an earlier section of the method. The remainder of this
block catches any exceptions, prints the corresponding message, and exits the
program:

//Delays (plural)
try
{

pushResponse = sp.pushServiceIndication(new String[]
{clientAddress},
"Travel Service: Flight Status Update",
alertURL,
ServiceIndicationAction.signalHigh);

}
catch
{
...
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 73

SimplePush Class Essentials
Travel Example5

The next few lines insert a 10-second delay and catch any exceptions that might
occur:

int sleepTime = 10; // Wait for 10 seconds.
try
{

wait(sleepTime * 1000);
}
catch (Exception exception)
{

System.out.println("Exception during wait: " +
exception.getMessage());

}

The next section sends a Status Query message to determine whether the client
received the Service Indication. The first line initializes a StatusQueryResponse
object to hold the response to the Status Query message. The next line sends the
Status Query message and catches any exceptions.

The next two lines extract the Status Query response and determine whether the
message was delivered. If it was, the subsequent try...catch block sends a Cache
Operation to invalidate the client’s cache in preparation for the next Service
Indication:

StatusQueryResponse statusResponse = null;

try
{

statusResponse = sp.queryStatus(pushResponse.getPushID(),
new String[] {clientAddress});

}
catch
...

StatusQueryResult sqResult = statusResponse.getResult(0);

if (sqResult != null &&
sqResult.getMessageState().equals("delivered"))

{
try
{

pushResponse = sp.pushCacheOperation(new String[]{clientAddress},
CacheOperationType.cachedService, alertURL);

}
catch
...
74 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

SimplePush Class Essentials
Travel Example 5

The final try...catch block sends another Service Indication informing the user
that the flight has been delayed yet again:

try
{

pushResponse = sp.pushServiceIndication(new String[] {clientAddress},
"Travel Service: Flight Status Update",
alertURL,
ServiceIndicationAction.signalHigh);

}
catch
...

This Service Indication displays updated delay information on the mobile browser
because of the preceding Cache Operation, which invalidated the client’s cache,
requiring the mobile browser to load the second Service Indication URL from the
PPG, and with it the updated delay information. If the Cache Operation were
omitted, the user would not see the new information supplied with the second
Service Indication because the URL is the same for both Service Indications. As a
result, the previous delay information would be retrieved from the client’s cache.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 75

SimplePush Class Essentials
Travel Example5

76 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

6
6WAP Push Library Essentials

This chapter introduces the essentials of application development using the WAP
Push Library.

Required Import Statements

To develop any application using the WAP Push Library, your code must include
the following statement:

import com.openwave.wappush.*;

You can import specific WAP Push Library classes instead of the entire package, if
desired.

In addition to the WAP Push Library, your applications may require functionality
of the following Java classes:

import java.io.IOException;
import java.io.FileNotFoundException;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.Enumeration;

You may also need to import other Java classes, particularly the Abstract
Windowing Toolkit (AWT), Swing, and event-handling classes, to support the user
interface elements that your application implements.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 77

WAP Push Library Essentials
PPG and Client Addresses6

WAP Push Library Application Basics

All WAP Push Library applications should perform these operations:

• Build Push Access Protocol (PAP) content appropriate for the type of PAP
operation

• Set any desired options for the PAP operation

• Instantiate a Pusher object that contains the Push Proxy Gateway (PPG)
address for the PAP operation

• Send the PAP operation with the desired content payload

• Read the response returned from the PPG

• Query the response for any desired information

• Handle all exceptions

The following sections provide examples of basic WAP Push Library applications.

PPG and Client Addresses

The examples in this chapter depict all PPG and client addresses as hard-coded
constants, in part to show the proper format and in part to make the examples easy
to understand. A much better approach would be to extract the PPG and client
addresses from the HTTP request headers to the PPG or from a user interface. For
more information on the former approach, see “Extracting PPG and Client
Addresses from PPG Headers” on page 23, “Sending a Push Submission” on
page 30, and “Travel Example” on page 65.
78 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Service Indication Payload Example 6

Service Indication Payload Example

This example demonstrates how to send a Push Submission with a Service
Indication (SI) payload. This content type sends notifications to addressees in an
asynchronous manner. These notifications may, for example, be about new email,
changes in stock price, news headlines, advertising, or reminders of various types.

In its most basic form, an SI contains a short message and a URI specifying a
service. The message is presented to the addressee upon reception. The addressee
has the option of starting the service indicated by the URI immediately or
postponing the SI for later handling. If the addressee postpones the SI, the client
device stores it.

This example uses some of the same constants and other code as the previous
examples, but demonstrates additional push message options and an even more
complex payload type.

What It Does

The ServiceInd.java file imports all the necessary files, including the WAP Push
Library. Several constant fields define the recipient address, the ID string of the
Push Submission, the URL of the PPG, and the SI URI. The public ServiceInd
class encapsulates all of the program’s functionality in two methods:

• The SubmitMsg method instantiates the necessary WAP Push Library objects,
sends the Push Submission, and prints some of the pertinent information from
the response object returned from the PPG.

• The main method calls the SubmitMsg method and handles any exceptions
returned from the PPG.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications you write.

A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 79

WAP Push Library Essentials
Service Indication Payload Example6

ServiceInd.java

/*
* Title: WAP Push Library Service Indication Payload Example
* Description: A basic Push Submission example using a
* Service Indication payload
*/

import java.io.IOException;
import java.io.FileNotFoundException;
import java.net.MalformedURLException;
import java.net.URL;
import com.openwave.wappush.*;

public class ServiceInd {
//Constants used in this example.
static final String address = "jdoe_devgate2.openwave.com" +

"/TYPE=USER@ppg.openwave.com";
static final String pushID = "9f1000a023@openwave.com";
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
static final String SvcIndURI =

"http://devgate2.openwave.com/cgi-bin/mailbox.cgi";

static URL ppgURL = null;
static URL siURI = null;

public void SubmitMsg() throws WapPushException, IOException,
MalformedURLException {
//Instantiate and initialize the Pusher object.
Pusher ppg = new Pusher(ppgURL);
ppg.initialize();

//Instantiate the Service Indication object.
//This is the text string to send to the client device.
String alertText = "Mobile Mail: New message!";
ServiceIndication serviceIndication =

new ServiceIndication(alertText);

//Set the URI for this SI.
serviceIndication.setHref(siURI);

//Add some optional information to the SI.
ServiceIndicationInfo info =

new ServiceIndicationInfo("Mailbox", "Full");
info.AddInfoBlock("ReadMessages", "All");
serviceIndication.setInfo(info);

//Set the Service Indication action to signal-high.
serviceIndication.setAction(ServiceIndicationAction.signalHigh);
//Add some optional time information.
serviceIndication.setExpires(

new DateTime(2004, 6, 15, 12, 0, 1));
serviceIndication.setCreated(

new DateTime("2002-06-15T12:00:00Z"));

//Instantiate the push message object and set some
//optional information.
PushMessage pushMessage = new PushMessage(pushID, address);
80 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Service Indication Payload Example 6

pushMessage.setDeliverBeforeTimestamp(new
DateTime("2004-06-15T12:00:01Z"));

//Instantiate a MimeEntity and add the PushMessage
//and ServiceIndication objects.
MimeEntity me = new MimeEntity();
me.addEntity(pushMessage);
me.addEntity(serviceIndication);

//Send the push message
PushResponse pushResponse = (PushResponse) ppg.send(me);

//Read some information from the response.
System.out.println("reply-Time = " +

pushResponse.getReplyTime());
System.out.println("response-result-code = " +

pushResponse.getResultCode());
System.out.println("response-result-desc = " +

pushResponse.getResultDesc());
}//SubmitMsg()

public static void main(String[] args) throws WapPushException,
IOException {
try {

ppgURL = new URL(ppgAddress);
siURI = new URL(SvcIndURI);
ServiceInd si = new ServiceInd();
si.SubmitMsg();

}
//Handle possible exceptions.
catch (BadMessageException exception) {

System.out.println("*** ERROR - bad message exception");
BadMessageResponse response = exception.getResponse();
System.out.println("*** ERROR = " +
response.getBadMessageFragment());

}
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (FileNotFoundException exception) {

System.out.println("*** ERROR - input file not found");
}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - malformed PPG URL");
}
catch (IOException exception) {

System.out.println("*** ERROR - I/O exception");
}
catch (Exception exception) {

System.out.println("*** ERROR - exception(" +
exception.getMessage() + ")");

}
}//main()

}//class ServiceInd
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 81

WAP Push Library Essentials
Service Indication Payload Example6

How It Works

This simple example declares a class, ServiceInd, in which the recipient address,
push message ID string, PPG URL, and SI URI are declared as constants:

static final String address = "jdoe_devgate2.openwave.com" +
"/TYPE=USER@ppg.openwave.com";

static final String pushID = "9f1000a023@openwave.com";
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
static final String SvcIndURI =

"http://devgate2.openwave.com/cgi-bin/mailbox.cgi";

A much better approach would be to extract the PPG and client addresses from the
HTTP request headers to the PPG or from a user interface. For more information
on the former approach, see “Extracting PPG and Client Addresses from PPG
Headers” on page 23, “Sending a Push Submission” on page 30, and “Travel
Example” on page 65.

Every Push Submission, regardless of the payload type, must include a unique
identifier. The identifier distinguishes one Push Submission from all others, a
critical factor if you want to cancel or retrieve status information for a Push
Submission. The PushMessage, CancelMessage, and StatusQueryMessage class
constructors define this parameter as a java.lang.String object. Assign each Push
Submission a unique identifier that includes the domain name of the push initiator,
as in the following examples:

2903011435@www.openwave.com

www.openwave.com/2903011435

See WAP Push Access Protocol for more information and examples.

The first two lines in the SubmitMsg method instantiate and initialize the PPG
object. The next two lines set the text to be displayed on the client device when the
SI is received and instantiate the SI object:

Pusher ppg = new Pusher(ppgURL);
ppg.initialize();

String alertText = "Mobile Mail: New message!";
ServiceIndication serviceIndication = new ServiceIndication(alertText);

The next line sets the value of the optional href attribute, which specifies the URI
used to access the indicated service. Not calling this method indicates that the
Service Indication is a simple notification for display on the client device:

serviceIndication.setHref(siURI);

Notice that the values of the ppgURL and siURI parameters are set in the main
method.
82 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Service Indication Payload Example 6

Of the next three lines, the first two define two optional info elements for the SI,
and the third adds them to the SI. The info element includes additional information
not provided by the attributes of the indication element. The info element contains
one or more item elements that specify the additional information. Each item
element includes a class attribute that describes the content of the item element.
How a client uses this information depends on the implementation. See
ServiceIndicationInfo in the accompanying JavaDoc API documentation for more
information.

ServiceIndicationInfo info = new ServiceIndicationInfo("Mailbox",
"Full");

info.AddInfoBlock("ReadMessages", "All");
serviceIndication.setInfo(info);

The next line sets the SI action attribute, which contains text that specifies the
action to be taken when the addressee receives an SI. In this case, the action is
signalHigh, which instructs the PPG to present the SI as soon as implementation
and bandwidth allow:

serviceIndication.setAction(ServiceIndicationAction.signalHigh);

The next two lines set optional time information attributes for the SI. The first line
specifies the time when an SI expires and should be automatically deleted. Not
calling this method indicates that the SI has no expiration time and is therefore not
subject to automatic deletion. The second line specifies the time of creation or last
modification of the content indicated by the service URI. This time may differ
from the time of creation of the SI.

serviceIndication.setExpires(
new DateTime(2004, 6, 15, 12, 0, 1));

serviceIndication.setCreated(
new DateTime("2002-06-15T12:00:00Z"));

The next line instantiates a PushMessage object. This object builds the Push
Submission from the push message ID string and the recipient address, both of
which are passed to the class constructor as parameters:

PushMessage pushMessage = new PushMessage(pushID, address);

The next line sets some of the available optional information for the push message.
In this case, the setDeliverBeforeTimestamp method sets the date and time before
which the push message is to be delivered:

pushMessage.setDeliverBeforeTimestamp(
new DateTime("2004-06-15T12:00:01Z"));

NOTE The time you set here must be at least 30 minutes following submission
of the push message.

The next block of lines builds a miltipart MIME entity containing the SI content,
encapsulated in a MimeEntity object, and sends the Push Submission to the PPG,
while at the same time instantiating an object to hold the response from the PPG:

MimeEntity me = new MimeEntity();
me.addEntity(pushMessage);
me.addEntity(serviceIndication);

PushResponse pushResponse = (PushResponse) ppg.send(me);
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 83

WAP Push Library Essentials
Service Indication Payload Example6

Notice that the response object must be typecast to the PushResponse class. This is
because the Pusher.send method returns a PAPResponse type which must then be cast
to the desired response type for the current push operation.

The remaining lines in the SubmitMsg method print some of the pertinent
information returned from the PPG in the form of a PushResponse object instance,
as in the previous examples.

The main method instantiates the PPG URL and SI URI objects, instantiates a
ServiceInd object, and calls the SubmitMsg method:

try {
ppgURL = new URL(ppgAddress);
siURI = new URL(SvcIndURI);
ServiceInd si = new ServiceInd();
si.SubmitMsg();

}

Notice that these four lines are enclosed in a try block. The catch blocks that make
up the remainder of the main method handle any exceptions that might occur,
although only by printing error text to the console. A more sophisticated
application could implement features to deal with some classes of exceptions
automatically. Regardless of the level of exception handling that you build into
your applications, you should always use try...catch blocks to isolate and report
all exceptions.
84 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Service Loading Payload Example 6

Service Loading Payload Example

This example demonstrates how to send a Push Submission with a Service Loading
(SL) payload. This content type causes a user agent on a mobile client to load and
execute a service that, for example, can be in the form of a WML deck. The SL
contains a URI specifying the service the user agent is to load, with or without user
intervention as appropriate.

This example uses some of the same constants and other code as the previous
examples, but demonstrates another complex payload type.

What It Does

The ServiceLoad.java file imports all the necessary files, including the WAP Push
Library. Several constant fields define the recipient address, the ID string of the
Push Submission, the URL of the PPG, and the SL URI. The public ServiceLoad
class encapsulates all of the program’s functionality in two methods:

• The SubmitMsg method instantiates the necessary WAP Push Library objects,
sends the Push Submission, and prints some of the pertinent information from
the response object returned from the PPG.

• The main method calls the SubmitMsg method and handles any exceptions
returned from the PPG.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more
automated-exception handling and response mechanism into any applications you
write.

A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 85

WAP Push Library Essentials
Service Loading Payload Example6

ServiceLoad.java

/*
* Title: WAP Push Library Service Loading Payload Example
* Description: A basic Push Submission example using a
* Service Loading payload
*/

import java.io.IOException;
import java.io.FileNotFoundException;
import java.net.MalformedURLException;
import java.net.URL;
import com.openwave.wappush.*;

public class ServiceLoad {
//Constants used in this example.
static final String address = "jdoe_devgate2.openwave.com" +

"/TYPE=USER@ppg.openwave.com";
static final String pushID = "9f1000a024@openwave.com";
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
static final String SvcLoadURI =

"http://devgate2.openwave.com/cgi-bin/mailbox.wml";

static URL ppgURL = null;
static URL slURI = null;

public void SubmitMsg() throws WapPushException, IOException,
MalformedURLException {
//Instantiate the Pusher and ServiceLoading objects;
//initialize the Pusher object.
Pusher ppg = new Pusher(ppgURL);
ServiceLoading serviceLoading = new ServiceLoading(slURI);
ppg.initialize();

//Set the execute-low action.
serviceLoading.setAction(ServiceLoadingAction.executeLow);

//Instantiate the push message object and set some
//optional information.
PushMessage pushMessage = new PushMessage(pushID, address);
pushMessage.addAddress("1234567890/" +

"TYPE=PLMN@ppg.openwave.com");
pushMessage.setDeliverBeforeTimestamp(new

DateTime("2004-06-15T12:00:00Z"));

//Instantiate a Quality of Service (QOS) object for the Push
//message.
QualityOfService pm_qos = new QualityOfService();

//Set the desired QOS attributes.
pm_qos.setDeliveryMethod(DeliveryMethod.confirmed);
pm_qos.setPriority(DeliveryPriority.high);
pm_qos.setNetwork("GSM");
pm_qos.setNetworkRequired(true);
pm_qos.setBearer("USSD");
pm_qos.setBearerRequired(false);

//Set the QOS for the push message.
86 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Service Loading Payload Example 6

pushMessage.setQualityOfService(pm_qos);

//Instantiate a MimeEntity and add the PushMessage and
//ServiceLoading objects.
MimeEntity me = new MimeEntity();
me.addEntity(pushMessage);
me.addEntity(serviceLoading);

//Send the push message contained in the MimeEntity.
PushResponse pushResponse = (PushResponse) ppg.send(me);

//Read some information from the response.
System.out.println("reply-Time = " +

pushResponse.getReplyTime());
System.out.println("response-result-code = " +

pushResponse.getResultCode());
System.out.println("response-result-desc = " +

pushResponse.getResultDesc());
}//SubmitMsg()

public static void main(String[] args) throws WapPushException,
IOException {
try {

ppgURL = new URL(ppgAddress);
slURI = new URL(SvcLoadURI);
ServiceLoad sl = new ServiceLoad();
sl.SubmitMsg();

}
//Handle possible exceptions.
catch (BadMessageException exception) {

System.out.println("*** ERROR - bad message exception");
BadMessageResponse response = exception.getResponse();
System.out.println("*** ERROR = " +

response.getBadMessageFragment());
}
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (FileNotFoundException exception) {

System.out.println("*** ERROR - input file not found");
}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - malformed PPG URL");
}
catch (IOException exception){

System.out.println("*** ERROR - I/O exception");
}
catch (Exception exception) {

System.out.println("*** ERROR - exception(" +
exception.getMessage() + ")");

}
}//main()

}//class ServiceLoad
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 87

WAP Push Library Essentials
Service Loading Payload Example6

How It Works

This simple example declares a class, ServiceLoad, in which the recipient address,
push message ID string, PPG URL, and SL URI are declared as constants:

static final String address = "jdoe_devgate2.openwave.com" +
"/TYPE=USER@ppg.openwave.com";

static final String pushID = "9f1000a024@openwave.com";
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
static final String SvcLoadURI =

"http://devgate2.openwave.com/cgi-bin/mailbox.wml";

A much better approach would be to extract the PPG and client addresses from the
HTTP request headers to the PPG or from a user interface. For more information
on the former approach, see “Extracting PPG and Client Addresses from PPG
Headers” on page 23, “Sending a Push Submission” on page 30, and “Travel
Example” on page 65.

Every Push Submission, regardless of the payload type, must include a unique
identifier. The identifier distinguishes one Push Submission from all others, a
critical factor if you want to cancel or retrieve status information for a Push
Submission. The PushMessage, CancelMessage, and StatusQueryMessage class
constructors define this parameter as a java.lang.String object. Assign each Push
Submission a unique identifier that includes the domain name of the push initiator,
as in the following examples:

2903011435@www.openwave.com

www.openwave.com/2903011435

See WAP Push Access Protocol for more information and examples.

The first three lines in the SubmitMsg method instantiate and initialize the Pusher
and SL objects:

Pusher ppg = new Pusher(ppgURL);
ServiceLoading serviceLoading = new ServiceLoading(slURI);
ppg.initialize();

Notice that the values of the ppgURL and slURI parameters are set in the main
method.

The next line sets the SL action attribute to executeLow, which indicates that the
service identified by the URI is loaded in the same way the user agent generally
performs end-user-initiated method requests. This generally means that the service
content is retrieved either from an origin server or from the client device cache, if
available. After successfully completing the method request, the user agent loads
the indicated service into a clean user agent context and executes it in a nonintrusive
manner:

serviceLoading.setAction(ServiceLoadingAction.executeLow);

The next line instantiates a PushMessage object. This object builds the Push
Submission from the push message ID string and the recipient address, both of
which are passed to the class constructor as parameters:

PushMessage pushMessage = new PushMessage(pushID, address);
88 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Service Loading Payload Example 6

The next two lines set some of the available optional information for the push
message; in this case, an additional recipient address and the date and time before
which the push message is to be delivered:

pushMessage.addAddress(
"1234567890/TYPE=PLMN@ppg.openwave.com");

pushMessage.setDeliverBeforeTimestamp(
new DateTime("2002-06-15T12:00:01Z"));

The next line instantiates a Quality of Service (QOS) object for this Push
Submission. The quality-of-service element specifies the delivery qualities that
the push initiator expects for a push message:

QualityOfService pm_qos = new QualityOfService();

The next several lines specify the desired QOS attributes for this Push Submission.
The first line sets the value of the optional delivery-method attribute to confirmed,
which specifies that the PPG is required to use confirmed delivery of the push
message to the recipient. The push initiator can request confirmed delivery without
setting a URL for the ppg-notify-requested-to attribute of the push-message
element, as in this example. The result is that the push message is confirmed over
the air, but the PPG does not send confirmation to the push initiator. Call the
PushMessage.setPpgNotifyRequestedTo method to set a URL for this attribute.

pm_qos.setDeliveryMethod(DeliveryMethod.confirmed);

The next line sets the value of the optional priority attribute, which specifies that
the delivery priority for this push message is high. The way in which the PPG
handles delivery priority is implementation specific:

pm_qos.setDeliveryPriority(high);

The next four lines set the network and bearer for the Push Submission. The
network is required, as indicated by the setNetworkRequired method. The bearer is
optional, as indicated by the setBearerRequired method.

pm_qos.setNetwork("GSM");
pm_qos.setNetworkRequired(true);
pm_qos.setBearer("USSD");
pm_qos.setBearerRequired(false);

The next line adds the defined QOS elements to the push message object instance:

pushMessage.setQualityOfService(pm_qos);

You can query the QOS response from the PPG, which indicates the delivery
qualities that the PPG used during delivery of a push message. You can also send a
Status Query message, referencing the desired push message, to obtain the same
information.

The next block of lines builds a miltipart MIME entity containing the SL content,
encapsulated in a MimeEntity object, and sends the Push Submission to the PPG,
while at the same time instantiating an object to hold the response from the PPG:

MimeEntity me = new MimeEntity();
me.addEntity(pushMessage);
me.addEntity(serviceLoading);

PushResponse pushResponse = (PushResponse) ppg.send(me);
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 89

WAP Push Library Essentials
Service Loading Payload Example6

Notice that the response object must be typecast to the PushResponse class. This is
because the Pusher.send method returns a PAPResponse type which must then be cast
to the desired response type for the current push operation.

The remaining lines in the SubmitMsg method print some of the pertinent
information returned from the PPG in the form of a PushResponse object instance,
as in the previous examples.

The main method instantiates the PPG URL and SL URI objects, instantiates a
ServiceLoad object, and calls the SubmitMsg method:

try {
ppgURL = new URL(ppgAddress);
slURI = new URL(SvcLoadURI);
ServiceLoad sl = new ServiceLoad();
sl.SubmitMsg();

}

Notice that these four lines are enclosed in a try block. The catch blocks that make
up the remainder of the main method handle any exceptions that might occur,
although only by printing error text to the console. A more sophisticated
application could implement features to deal with some classes of exceptions
automatically. Regardless of the level of exception handling that you build into
your applications, you should always use try...catch blocks to isolate and report
all exceptions.
90 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Cache Operation Payload Example 6

Cache Operation Payload Example

This example demonstrates how to send a Push Submission with a Cache
Operation (CO) payload. This content type invalidates content objects in the user
agent cache. All invalidated content objects must be reloaded from the server on
which they originated the next time they are accessed.

This example uses some of the same constants and other code as the previous
example, but demonstrates additional push message options and a more complex
payload type.

What It Does

The CacheOp.java file imports all the necessary files, including the WAP Push
Library. Several constant fields define the recipient address, the ID string of the
Push Submission, the URL of the PPG, and the CO URI. The public CacheOp class
encapsulates all of the program’s functionality in two methods:

• The SubmitMsg method instantiates the necessary WAP Push Library objects,
sends the Push Submission, and prints some of the pertinent information from
the response object returned from the PPG.

• The main method calls the SubmitMsg method and handles any exceptions
returned from the PPG.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications you write.

A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 91

WAP Push Library Essentials
Cache Operation Payload Example6

CacheOp.java

/*
* Title: WAP Push Library Cache Operation Payload Example
* Description: A basic Push Submission example using a
* Cache Operation payload
*/

import java.io.IOException;
import java.io.FileNotFoundException;
import java.net.MalformedURLException;
import java.net.URL;
import com.openwave.wappush.*;

public class CacheOp {
//Constants used in this example.
static final String address = "jdoe_devgate2.openwave.com" +

"/TYPE=USER@ppg.openwave.com";
static final String pushID = "9f1000a022@openwave.com";
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
static final String cacheOpURI =

"http://devgate2.openwave.com/cgi-bin/mailbox.cgi";

static URL ppgURL = null;
static URL coURI = null;

public void SubmitMsg() throws WapPushException, IOException,
MalformedURLException {
//Instantiate and initialize the Pusher and Cache Operation
//objects.
Pusher ppg = new Pusher(ppgURL);
ppg.initialize();
CacheOperation cacheOperation = new

CacheOperation(coURI, CacheOperationType.cachedService);

//Instantiate the push message object and set some
//optional information.
PushMessage pushMessage = new PushMessage(pushID, address);
pushMessage.addAddress("jsmith_devgate2.openwave.com" +

"/TYPE=USER@ppg.openwave.com");
pushMessage.setDeliverAfterTimestamp(new

DateTime("2002-06-15T12:00:00Z"));

//Instantiate a MimeEntity object and add the PushMessage and
//CacheOperation objects.
MimeEntity me = new MimeEntity();
me.addEntity(pushMessage);
me.addEntity(cacheOperation);

//Send the push message contained in the MimeEntity.
PushResponse pushResponse = (PushResponse) ppg.send(me);

//Read some information from the response.
92 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Cache Operation Payload Example 6

System.out.println("reply-Time = " +
pushResponse.getReplyTime());

System.out.println("response-result-code = " +
pushResponse.getResultCode());

System.out.println("response-result-desc = " +
pushResponse.getResultDesc());

}//SubmitMsg()

public static void main(String[] args) throws WapPushException,
IOException {
try {

ppgURL = new URL(ppgAddress);
coURI = new URL(cacheOpURI);
CacheOp co = new CacheOp();
co.SubmitMsg();

}
//Handle possible exceptions.
catch (BadMessageException exception) {

System.out.println("*** ERROR - bad message exception");
BadMessageResponse response = exception.getResponse();
System.out.println("*** ERROR = " +

response.getBadMessageFragment());
}
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (FileNotFoundException exception) {

System.out.println("*** ERROR - input file not found");
}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - malformed PPG URL");
}
catch (IOException exception) {

System.out.println("*** ERROR - I/O exception");
}
catch (Exception exception) {

System.out.println("*** ERROR - exception("
+ exception.getMessage() + ")");

}
}//main()

}//class CacheOp
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 93

WAP Push Library Essentials
Cache Operation Payload Example6

How It Works

This simple example declares a class, CacheOp, in which the recipient address, push
message ID string, PPG URL, and CO URI are declared as constants:

static final String address = "jdoe_devgate2.openwave.com" +
"/TYPE=USER@ppg.openwave.com";

static final String pushID = "9f1000a022@openwave.com";
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
static final String cacheOpURI =

"http://devgate2.openwave.com/cgi-bin/mailbox.cgi";

A much better approach would be to extract the PPG and client addresses from the
HTTP request headers to the PPG or from a user interface. For more information
on the former approach, see “Extracting PPG and Client Addresses from PPG
Headers” on page 23, “Sending a Push Submission” on page 30, and “Travel
Example” on page 65.

Every Push Submission, regardless of the payload type, must include a unique
identifier. The identifier distinguishes one Push Submission from all others, a
critical factor if you want to cancel or retrieve status information for a Push
Submission. The PushMessage, CancelMessage, and StatusQueryMessage class
constructors define this parameter as a java.lang.String object. Assign each Push
Submission a unique identifier that includes the domain name of the push initiator,
as in the following examples:

2903011435@www.openwave.com

www.openwave.com/2903011435

See WAP Push Access Protocol for more information and examples.

The first three lines in the SubmitMsg method instantiate and initialize the Pusher and
CO objects:

Pusher ppg = new Pusher(ppgURL);
ppg.initialize();
CacheOperation cacheOperation = new CacheOperation(coURI,

CacheOperationType.cachedService);

Notice that the values of the ppgURL and coURI parameters are set in the main
method. The cachedService parameter is an enumerated type, defined in the
CacheOperationType class, which specifies the type of Cache Operation to be
performed. See CacheOperationType in the accompanying JavaDoc API
documentation for more information.

The next line instantiates a PushMessage object. This object builds the Push
Submission from the push message ID string and the recipient address, both of
which are passed to the class constructor as parameters:

PushMessage pushMessage = new PushMessage(pushID, address);
94 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Cache Operation Payload Example 6

The next two lines set some of the available optional information for the push
message; in this case, an additional recipient address and the date and time after
which the push message is to be delivered:

pushMessage.addAddress("jsmith_devgate2.openwave.com" +
"/TYPE=USER@ppg.openwave.com";");

pushMessage.setDeliverAfterTimestamp(new
DateTime("2002-06-15T12:00:00Z"));

NOTE The time you set here must be no more than seven days following
submission of the push message.

The next block of lines builds a miltipart MIME entity containing the Cache
Operation content, encapsulated in a MimeEntity object, and sends the Push
Submission to the PPG, while at the same time instantiating an object to hold the
response from the PPG:

MimeEntity me = new MimeEntity();
me.addEntity(pushMessage);
me.addEntity(cacheOperation);

PushResponse pushResponse = (PushResponse) ppg.send(me);

Notice that the response object must be typecast to the PushResponse class. This is
because the Pusher.send method returns a PAPResponse type which must then be cast
to the desired response type for the current push operation.

A great deal of additional information can be extracted from the response, if
desired. The final three lines in the SubmitMsg method print some of the pertinent
information returned from the PPG in the form of a PushResponse object instance.

System.out.println("reply-Time = " + pushResponse.getReplyTime());
System.out.println("response-result-code = " +

pushResponse.getResultCode());
System.out.println("response-result-desc = " +

pushResponse.getResultDesc());

The main method instantiates the PPG URL and CO URI objects, instantiates a
CacheOp object, and calls the SubmitMsg method:

try {
ppgURL = new URL(ppgAddress);
coURI = new URL(cacheOpURI);
CacheOp co = new CacheOp();
co.SubmitMsg();

}

Notice that these four lines are enclosed in a try block. The catch blocks that make
up the remainder of the main method handle any exceptions that might occur,
although only by printing error text to the console. A more sophisticated
application could implement features to deal with some classes of exceptions
automatically. Regardless of the level of exception handling that you build into
your applications, you should always use try...catch blocks to isolate and report
all exceptions.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 95

WAP Push Library Essentials
Custom Content Payload Example6

Custom Content Payload Example

This example demonstrates how to send a Push Submission with a Custom
Content payload. This content type can contain virtually any type of content. This
example demonstrates the essentials of building and sending a Push Submission.

What It Does

The Custom.java file imports all the necessary files, including the WAP Push
Library. Several constant fields define the recipient address, the ID string of the
Push Submission, and the URL of the PPG. The public Custom class encapsulates all
of the program’s functionality in two methods:

• The SubmitMsg method instantiates the necessary WAP Push Library objects,
sends the Push Submission, and prints some of the pertinent information from
the response object returned from the PPG.

• The main method calls the SubmitMsg method and handles any exceptions
returned from the PPG.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications you write.

A complete code listing follows.
96 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Custom Content Payload Example 6

Custom.java

/*
* Title: WAP Push Library Custom Content Payload Example
* Description: A basic Push Submission example using a
* Custom Content payload
*/

import java.io.IOException;
import java.io.FileNotFoundException;
import java.net.MalformedURLException;
import java.net.URL;
import com.openwave.wappush.*;

public class Custom {
//Constants used in this example.
static final String address = "jdoe_devgate2.openwave.com" +

"/TYPE=USER@ppg.openwave.com";
static final String pushID = "9f1000a022@openwave.com";
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
static final String message = "Happy Birthday!!";

static URL ppgURL = null;

public void SubmitMsg() throws WapPushException, IOException,
MalformedURLException {
//Instantiate and initialize the Pusher and CustomContent
//objects.
Pusher ppg = new Pusher(ppgURL);
ppg.initialize();
CustomContent cc = new CustomContent();
cc.setContentData(message, "text/plain");

//Instantiate the push message object.
PushMessage pushMessage = new PushMessage(pushID, address);

//Instantiate a MimeEntity object and add the PushMessage and
//CustomContent objects.
MimeEntity me = new MimeEntity();
me.addEntity(pushMessage);
me.addEntity(cc);

//Send the push message contained in the MimeEntity.
PushResponse pushResponse = (PushResponse) ppg.send(me);

//Read some information from the response.
System.out.println("reply-Time = " +

pushResponse.getReplyTime());
System.out.println("response-result-code = " +

pushResponse.getResultCode());
System.out.println("response-result-desc = " +

pushResponse.getResultDesc());
}//SubmitMsg()
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 97

WAP Push Library Essentials
Custom Content Payload Example6

public static void main(String[] args) throws WapPushException,
IOException {
try {

ppgURL = new URL(ppgAddress);
Custom custContent = new Custom();
custContent.SubmitMsg();

}
//Handle possible exceptions.
catch (BadMessageException exception) {

System.out.println("*** ERROR - bad message exception");
BadMessageResponse response = exception.getResponse();
System.out.println("*** ERROR = " +

response.getBadMessageFragment());
}
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (FileNotFoundException exception) {

System.out.println("*** ERROR - input file not found");
}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - malformed PPG URL");
}
catch (IOException exception) {

System.out.println("*** ERROR - I/O exception");
}
catch (Exception exception) {

System.out.println("*** ERROR - exception("
+ exception.getMessage() + ")");

}
}//main()

}//class Custom
98 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Custom Content Payload Example 6

How It Works

This simple example declares a class, Custom, in which the recipient address, push
message ID string, and PPG URL are declared as constants:

static final String address = "jdoe_devgate2.openwave.com" +
"/TYPE=USER@ppg.openwave.com";

static final String pushID = "9f1000a022@openwave.com";
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
static final String message = "Happy Birthday!!";

A much better approach would be to extract the PPG and client addresses from the
HTTP request headers to the PPG or from a user interface. For more information
on the former approach, see “Extracting PPG and Client Addresses from PPG
Headers” on page 23, “Sending a Push Submission” on page 30, and “Travel
Example” on page 65.

Every Push Submission, regardless of the payload type, must include a unique
identifier. The identifier distinguishes one Push Submission from all others, a
critical factor if you want to cancel or retrieve status information for a Push
Submission. The PushMessage, CancelMessage, and StatusQueryMessage class
constructors define this parameter as a java.lang.String object. Assign each Push
Submission a unique identifier that includes the domain name of the push initiator,
as in the following examples:

2903011435@www.openwave.com

www.openwave.com/2903011435

See WAP Push Access Protocol for more information and examples.

The first four lines in the SubmitMsg method instantiate and initialize the Pusher
object, instantiate the Custom Content object, and set the content for the Custom
Content object:

Pusher ppg = new Pusher(ppgURL);
ppg.initialize();
CustomContent cc = new CustomContent();
cc.setContentData(message, “text/plain”);

Notice that the value of the ppgURL parameter is set in the main method. The
Mediatype object defines the content type, while the CustomContent.setContentData
method sets the content. See CustomContent in the accompanying JavaDoc API
documentation for more information.

The next line instantiates a PushMessage object. This object builds the Push
Submission from the push message ID string and the recipient address, both of
which are passed to the class constructor as parameters:

PushMessage pushMessage = new PushMessage(pushID, address);
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 99

WAP Push Library Essentials
Custom Content Payload Example6

The next block of lines builds a miltipart MIME entity containing the Custom
Content, encapsulated in a MimeEntity object, and sends the Push Submission to the
PPG, while at the same time instantiating an object to hold the response from the
PPG:

MimeEntity me = new MimeEntity();
me.addEntity(pushMessage);
me.addEntity(cc);

PushResponse pushResponse = (PushResponse) ppg.send(me);

Notice that the response object must be typecast to the PushResponse class. This is
because the Pusher.send method returns a PAPResponse type which must then be cast
to the desired response type for the current push operation.

A great deal of additional information can be extracted from the response, if
desired. The final three lines in the SubmitMsg method print some of the pertinent
information returned from the PPG in the form of a PushResponse object instance.

System.out.println("reply-Time = " + pushresponse.getReplyTime());
System.out.println("response-result-code = " +

pushresponse.getResultCode());
System.out.println("response-result-desc = " +

pushresponse.getResultDesc());

The main method instantiates the PPG URL object, instantiates a CustomContent
object, and calls the SubmitMsg method:

try {
ppgURL = new URL(ppgAddress);
Custom custContent = new Custom();
custContent.SubmitMsg();

}

Notice that these lines are enclosed in a try block. The catch blocks that make up
the remainder of the main method handle any exceptions that might occur, although
only by printing error text to the console. A more sophisticated application could
implement features to deal with some classes of exceptions automatically.
Regardless of the level of exception handling that you build into your applications,
you should always use try...catch blocks to isolate and report all exceptions.
100 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Status Query Message and Response Example 6

Status Query Message and Response Example

This example demonstrates how to send a Status Query message, which requests
the current status of a Push Submission from the PPG. In addition to the standard
numeric code and text message, the Push Status Query response also contains an
attribute that indicates the status of the specified Push Submission. Nine message
states are currently specified:

• aborted The addressee aborted the message.

• cancelled A Push Cancellation successfully canceled the message.

• delivered The PPG successfully delivered the message to the addressee.

• expired The message reached the maximum age allowed by PPG policy or
could not be delivered by the time specified in the Push Submission.

• pending The PPG accepted the message and is in the process of delivering it.

• rejected The addressee rejected the message.

• timeout The delivery process timed out on the PPG.

• undeliverable A problem prevented delivery of the message. Call the
StatusQueryResult.getCode and StatusQueryResult.getDesc methods to retrieve
the code and text message returned from the PPG.

• unknown The PPG has no information about the status of the message.

See WAP Push Access Protocol for definitions of the numeric codes and
accompanying text messages.

NOTE PPG implementation of Status Query reporting is optional. If the PPG
does not support Status Query reporting, the response contains status code
3001 with the text message Not Implemented.

What It Does

The StatusQM.java file imports all the necessary files, including the WAP Push
Library. Three constant fields define the ID string of the Push Submission, the
specific addressee for which to retrieve status information, and the URL of the
PPG. Unless you specify otherwise, status for all addressees of the Push
Submission identified in the StatusQueryMessage class constructor is returned. The
public StatusQM class encapsulates all of the program’s functionality in three
methods:

• The printStatusQueryResponse method prints the pertinent information from
the response object returned from the PPG.

• The SubmitMsg method instantiates the necessary WAP Push Library objects
and sends the Status Query message.

• The main method calls the SubmitMsg method and handles any exceptions
returned from the PPG.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications that you write.
A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 101

WAP Push Library Essentials
Status Query Message and Response Example6

StatusQM.java

/*
* Title: WAP Push Library Status Query Message Example
* Description: A basic Status Query message/response example
*/

import java.io.IOException;
import java.io.FileNotFoundException;
import java.net.MalformedURLException;
import java.net.URL;
import com.openwave.wappush.*;

public class StatusQM {
//Constants used in this example.
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
static final String address = "jdoe_devgate2.openwave.com" +

"/TYPE=USER@ppg.openwave.com";

static URL ppgURL = null;

//Unique identifier of the Push Submission about which to
//retrieve status information.
static final String pushID = "9f1000a024@openwave.com";

//Private method that prints the response information.
private static void printStatusQueryResponse (StatusQueryResponse

response) {
System.out.println("StatusQueryResponse");
System.out.println(" push-id = " + response.getPushID());
int resultCount = response.getResultCount();
System.out.println(" result-count = " + resultCount);
for (int i = 0; i < resultCount; ++i) {

System.out.println(" result #" + i);
StatusQueryResult result = response.getResult(i);
MessageState mState = result.getMessageState();
System.out.println(" message-state = " +

mState.toString());
System.out.println(" code = " +

result.getCode());
System.out.println(" description = " +

result.getDesc());
DateTime dt = result.getEventTime();
System.out.println(" event-time = " +

dt.toString());
int addressCount = result.getAddressCount();
System.out.println(" address-count = " +

addressCount);

for (int j = 0; j < addressCount; ++j) {
System.out.println(" address #" + j +

" = " + result.getAddress(j));
}

}
}//printStatusQueryResponse
102 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Status Query Message and Response Example 6

public void SubmitMsg() throws WapPushException, IOException,
MalformedURLException {
//Instantiate and intitialize the Pusher object.
Pusher ppg = new Pusher(ppgURL);
ppg.initialize();

//Instantiate the StatusQueryMessage object.
StatusQueryMessage queryMessage = new StatusQueryMessage(pushID);

//Specific addressee for which to retrieve status information.
queryMessage.addAddress(address);

//Send the Status Query message.
StatusQueryResponse queryResponse =

(StatusQueryResponse) ppg.send(queryMessage);

//Print the response.
printStatusQueryResponse(queryResponse);

}//SubmitMsg()

public static void main(String[] args) throws WapPushException,
IOException {

try {
ppgURL = new URL(ppgAddress);
StatusQM sqm = new StatusQM();
sqm.SubmitMsg();

}
//Handle possible exceptions.
catch (BadMessageException exception) {

System.out.println("*** ERROR - bad message exception");
BadMessageResponse response = exception.getResponse();
System.out.println("*** ERROR = " +

response.getBadMessageFragment());
}
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (FileNotFoundException exception) {

System.out.println("*** ERROR - input file not found");
}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - malformed PPG URL");
}
catch (IOException exception) {

System.out.println("*** ERROR - I/O exception");
}
catch (Exception exception) {

System.out.println("*** ERROR - exception(" +
exception.getMessage() + ")");

}
}//main()

}//class StatusQM
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 103

WAP Push Library Essentials
Status Query Message and Response Example6

How It Works

This simple example declares a class, StatusQM, in which the push message ID string,
specific addressee for which to retrieve status information, and PPG URL are
declared as constants:

static final String pushID = "9f1000a024@openwave.com";
static final String address = "jdoe_devgate2.openwave.com" +

"/TYPE=USER@ppg.openwave.com";
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";

A much better approach would be to extract the PPG and client addresses from the
HTTP request headers to the PPG or from a user interface. For more information
on the former approach, see “Extracting PPG and Client Addresses from PPG
Headers” on page 23, “Sending a Push Submission” on page 30, and “Travel
Example” on page 65.

The private printStatusQueryResponse method takes the response object returned
from the PPG as a parameter. This method loops through all of the separate results
returned from the PPG, typically one for each addressee for which message status
is desired, and prints the pertinent information. In this example, only one set of
results would be returned because the Status Query message defines a single
addressee.

The first two lines in the SubmitMsg method instantiate and initialize the Pusher
object:

Pusher ppg = new Pusher(ppgURL);
ppg.initialize();

Notice that the value of the ppgURL parameter is set in the main method.

The next two lines instantiate the Status Query message object and add the
addressee for which to retrieve status information:

StatusQueryMessage queryMessage = new StatusQueryMessage(pushID);
queryMessage.addAddress(address);

The next line actually sends the Status Query message to the PPG, while at the
same time instantiating an object to hold the response from the PPG:

StatusQueryResponse queryResponse =
(StatusQueryResponse) ppg.send(queryMessage);

Notice that the response object must be typecast to the StatusQueryResponse class.
This is because the Pusher.send method returns a PAPResponse type which must then
be cast to the desired response type for the current push operation.

The last line in the SubmitMsg method calls the private printStatusQueryResponse
method, which prints the pertinent information returned from the PPG in the form
of a StatusQueryResponse object instance:

printStatusQueryResponse(queryResponse);
104 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Push Cancel Message and Response Example 6

The main method instantiates the PPG URL object, instantiates a StatusQM object,
and calls the SubmitMsg method:

try {
ppgURL = new URL(ppgAddress);
StatusQM sqm = new StatusQM();
sqm.SubmitMsg();

}

Notice that these lines are enclosed in a try block. The catch blocks that make up
the remainder of the main method handle any exceptions that might occur, although
only by printing error text to the console. A more sophisticated application could
implement features to deal with some classes of exceptions automatically.
Regardless of the level of exception handling that you build into your applications,
you should always use try...catch blocks to isolate and report all exceptions.

Push Cancel Message and Response Example

This example demonstrates how to send a Push Cancellation, which allows the
push initiator to attempt to cancel a Push Submission, and how to read the
response from the PPG, which indicates the status of the cancellation request. A
Push Submission can be canceled only before it has been delivered.

NOTE PPG support for the Push Cancellation operation is optional. If the PPG
does not support Push Cancellation, the response contains status code 3001
with the text message Not Implemented.

What It Does

The CancelPush.java file imports all the necessary files, including the WAP Push
Library. Two constant fields define the ID string of the Push Submission to be
canceled and the URL of the PPG. Unless you specify otherwise, the Push
Submission identified in the CancelMessage class constructor is canceled for all
addressees. The public CancelPush class encapsulates all of the program’s
functionality in three methods:

• The printCancelResponse method prints the pertinent information from the
response object returned from the PPG.

• The SubmitMsg method instantiates the necessary WAP Push Library objects
and sends the Push Cancellation.

• The main method calls the SubmitMsg method and handles any exceptions
returned from the PPG.

The exception handling demonstrated in the following example is limited to
displaying error messages on the console. It would be better, however, to build a
more automated exception-handling and response mechanism into any applications
you write.

A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 105

WAP Push Library Essentials
Push Cancel Message and Response Example6

CancelPush.java

/*
* Title: WAP Push Library Push Cancellation Example
* Description: A basic Push Cancellation/response example
*/

import java.io.IOException;
import java.io.FileNotFoundException;
import java.net.MalformedURLException;
import java.net.URL;
import com.openwave.wappush.*;

public class CancelPush {
//Constants used in this example.
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
static URL ppgURL = null;

//Unique identifier of the Push Submission to cancel.
static final String pushID = "9f1000a024@openwave.com";

//Private method that prints the response information.
private static void printCancelResponse (CancelResponse response) {

System.out.println("CancelResponse");
System.out.println(" push-id = " + response.getPushID());
int resultCount = response.getResultCount();
System.out.println(" result-count = " + resultCount);

for (int i = 0; i < resultCount; ++i) {
System.out.println(" result #" + i);
CancelResult result = response.getResult(i);
System.out.println(" code = " + result.getCode());
System.out.println(" description = " +

result.getDesc());
int addressCount = result.getAddressCount();
System.out.println(" address-count = " +

addressCount);

for (int j = 0; j < addressCount; ++j) {
System.out.println(" address #" + j + " = "

+ result.getAddress(j));
}

}
}//printCancelResponse

public void SubmitMsg() throws WapPushException, IOException,
MalformedURLException {
//Instantiate the CancelMessage and Pusher objects; initialize
//the Pusher object.
CancelMessage cancelMsg = new CancelMessage(pushID);
Pusher ppg = new Pusher(ppgURL);
ppg.initialize();
106 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Push Cancel Message and Response Example 6

//Send the cancel request and read the response.
CancelResponse cancelResponse =

(CancelResponse) ppg.send(cancelMsg);
printCancelResponse(cancelResponse);

}

public static void main(String[] args) throws WapPushException,
IOException {
try {

ppgURL = new URL(ppgAddress);
CancelPush cp = new CancelPush();
cp.SubmitMsg();

}
//Handle possible exceptions.
catch (BadMessageException exception) {

System.out.println("*** ERROR - bad message exception");
BadMessageResponse response = exception.getResponse();
System.out.println("*** ERROR = " +

response.getBadMessageFragment());
}
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (FileNotFoundException exception) {

System.out.println("*** ERROR - input file not found");
}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - malformed PPG URL");
}
catch (IOException exception) {

System.out.println("*** ERROR - I/O exception");
}
catch (Exception exception) {

System.out.println("*** ERROR - exception(" +
exception.getMessage() + ")");

}
}//main()

}//class CancelPush
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 107

WAP Push Library Essentials
Push Cancel Message and Response Example6

How It Works

This simple example declares a class, CancelPush, in which the push message ID
string (specifying the message to cancel) and PPG URL are declared as constants:

static final String pushID = "9f1000a024@openwave.com";
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap"

A much better approach would be to extract the PPG and client addresses from the
HTTP request headers to the PPG or from a user interface. For more information
on the former approach, see “Extracting PPG and Client Addresses from PPG
Headers” on page 23, “Sending a Push Submission” on page 30, and “Travel
Example” on page 65.

The private printCancelResponse method takes the response object returned from
the PPG as a parameter. This method loops through all of the separate results
returned from the PPG, typically one for each addressee whose message is to be
canceled, and prints the pertinent information.

The first three lines in the SubmitMsg method instantiate and initialize the Pusher and
Push Cancellation objects:

CancelMessage cancelMsg = new CancelMessage(pushID);
Pusher ppg = new Pusher(ppgURL);
ppg.initialize();

Notice that the value of the ppgURL parameter is set in the main method.

The next line sends the Push Cancellation request to the PPG, while at the same
time instantiating an object to hold the response from the PPG:

CancelResponse cancelResponse = (CancelResponse) ppg.send(cancelMsg);

Notice that the response object must be typecast to the CancelResponse class. This is
because the Pusher.send method returns a PAPResponse type which must then be cast
to the desired response type for the current push operation.

The last line in the SubmitMsg method calls the private printCancelResponse method,
which prints the pertinent information returned from the PPG in the form of a
CancelResponse object instance:

printCancelResponse(cancelResponse);

The main method instantiates the PPG URL object, instantiates aCancelPush object,
and calls theSubmitMsg method:

try {
ppgURL = new URL(ppgAddress);
CancelPush cp = new CancelPush();
cp.SubmitMsg();

}

Notice that these lines are enclosed in a try block. The catch blocks that make up
the remainder of the main method handle any exceptions that might occur, although
only by printing error text to the console. A more sophisticated application could
implement features to deal with some classes of exceptions automatically.
Regardless of the level of exception handling that you build into your applications,
you should always use try...catch blocks to isolate and report all exceptions.
108 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Client Capabilities Query Message and Response Example 6

Client Capabilities Query Message and Response Example

This example demonstrates how to send a Client Capabilities Query (CCQ)
message, which requests the capabilities for a specific client device from the PPG. A
CCQ response also includes a complete User Agent Profile (UAProf), which
provides detailed information about the specified client device.

NOTE PPG implementation of CCQ reporting is optional. If the PPG does not
support CCQ reporting, the response contains status code 3001 with the text
message Not Implemented.

What it Does

The ClientCaps.java file imports all the necessary files, including the WAP Push
Library. Two constant fields define the specific addressee for which to retrieve
CCQ information and the URL of the PPG. The public ClientCaps class
encapsulates all of the program’s functionality in four methods:

• The printCCQResponse method prints the pertinent information from the CCQ
response object returned from the PPG.

• The printUAProfile method prints UAProf information from the CCQ
response object returned from the PPG.

• The SubmitMsg method instantiates the necessary WAP Push Library objects
and sends the CCQ message.

• The main method calls the SubmitMsg method and handles any exceptions
returned from the PPG.

The exception handling demonstrated in this example is limited to displaying error
messages on the console. It would be better, however, to build a more automated
exception-handling and response mechanism into any applications that you write.

A complete code listing follows.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 109

WAP Push Library Essentials
Client Capabilities Query Message and Response Example6

ClientCaps.java

/*
* Title: WAP Push Library CCQ Message Example
* Description: A basic CCQ message/response example
*/

import java.io.IOException;
import java.io.FileNotFoundException;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.Enumeration;
import com.openwave.wappush.*;

public class ClientCaps {
//Constants used in this example.
static final String ppgAddress =

"http://devgate2.openwave.com:9002/pap";
static final String address = "jdoe_devgate2.openwave.com" +

"/TYPE=USER@ppg.openwave.com";

static URL ppgURL = null;

//Private methods that print the response information.
private static void printCCQResponse(CcqResponse response) {

System.out.println("ClientCapsQueryResponse");
System.out.println(" result-code = " + response.getCode());
System.out.println(" result-description = " +

response.getDesc());
System.out.println(" query-id = " + response.getQueryID());
System.out.println(" address = " + response.getAddress());
UAProfile profile = response.getUserAgentProfile();
if (profile == null)

System.out.println("UAProfile = null");
else

printUAProfile(profile);
}//printCCQResponse

private static void printUAProfile (UAProfile profile) {
System.out.println("UAProfile");
int compCount = profile.componentCount();
System.out.println(" profile-id = " + profile.getID());
System.out.println(" component-count = " + compCount);
for (int i = 0; i < compCount; ++i) {

UAComponent comp = profile.getComponent(i);
System.out.println(" component #" + i);
System.out.println(" component-id = " +

comp.getID());
System.out.print(" defaults-resource = ");
try {

URL defaultsURL = comp.getDefaultsResource();
System.out.println(defaultsURL);

}
catch (Exception e) {
110 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Client Capabilities Query Message and Response Example 6

System.out.println("**malformed URL**");
}
System.out.print(" schema-resource = ");

try {
URL schemaURL = comp.getSchemaResource();
System.out.println(schemaURL);

}
catch (Exception e) {

System.out.println("**malformed URL**");
}

Enumeration attNames = comp.getAttributeNames();
while (attNames.hasMoreElements()) {

String attName = (String) attNames.nextElement();
System.out.println(" " + attName + " = ");
Enumeration attValues = comp.getAllValuesOf(attName);
while (attValues.hasMoreElements()) {

Object attValue = attValues.nextElement();
if (attValue instanceof Bag) {

Bag bag = (Bag) attValue;
int itemCount = bag.count();
System.out.print(" (");
for (int j = 0; j < itemCount; ++j) {

if (j != 0)
System.out.print(", ");

System.out.print(bag.get(j));
}
System.out.println(")");

}
else {
System.out.println(" " + attValue);
}

}
}

}
}//printUAProf

public void SubmitMsg() throws WapPushException, IOException,
MalformedURLException {
//Instantiate the CCQ message and Pusher objects, initiailze the
//Pusher object, send the CCQ message, and print the response.
CcqMessage ccqMessage = new CcqMessage(address);
Pusher ppg = new Pusher(ppgURL);
ppg.initialize();
CcqResponse ccqResponse = (CcqResponse) ppg.send(ccqMessage);
printCCQResponse(ccqResponse);

}

public static void main(String[] args) throws WapPushException,
IOException {
try {

ppgURL = new URL(ppgAddress);
ClientCaps ccq = new ClientCaps();
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 111

WAP Push Library Essentials
Client Capabilities Query Message and Response Example6

ccq.SubmitMsg();
}
//Handle possible exceptions.
catch (BadMessageException exception) {

System.out.println("*** ERROR - bad message exception");
BadMessageResponse response = exception.getResponse();
System.out.println("*** ERROR = " +

response.getBadMessageFragment());
}
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (FileNotFoundException exception) {

System.out.println("*** ERROR - input file not found");
}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - malformed PPG URL");
}
catch (IOException exception) {

System.out.println("*** ERROR - I/O exception");
}
catch (Exception exception) {

System.out.println("*** ERROR - exception(" +
exception.getMessage() + ")");

}
}//main()

}//class ClientCaps
112 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

WAP Push Library Essentials
Client Capabilities Query Message and Response Example 6

How It Works

This simple example declares a class, ClientCaps, in which the client for which to
retrieve CCQ information and the PPG URL are declared as constants:

static final String ppgAddress =
"http://devgate2.openwave.com:9002/pap"

static final String address = "jdoe_devgate2.openwave.com" +
"/TYPE=USER@ppg.openwave.com";

A much better approach would be to extract the PPG and client addresses from the
HTTP request headers to the PPG or from a user interface. For more information
on the former approach, see “Extracting PPG and Client Addresses from PPG
Headers” on page 23, “Sending a Push Submission” on page 30, and “Travel
Example” on page 65.

The private printCCQResponse method takes the response object returned from the
PPG as a parameter. This method loops through all of the separate results returned
from the PPG and prints the pertinent information. If the PPG returns UAProf
information for the client device, the private printUAProfile method loops through
and prints all of the UAProf information returned. See UAProfile in the
accompanying JavaDoc API reference for more information on the methods called
in this section.

The first three lines in the SubmitMsg method instantiate and initialize the Pusher and
CCQ message objects:

CcqMessage ccqMessage = new CcqMessage(address);
Pusher ppg = new Pusher(ppgURL);
ppg.initialize();

Notice that the value of the ppgURL parameter is set in the main method.

The next line actually sends the CCQ message to the PPG, while at the same time
instantiating an object to hold the response from the PPG:

CcqResponse ccqResponse = (CcqResponse) ppg.send(ccqMessage);

Notice that the response object must be typecast to the CcqResponse class. This is
because the Pusher.send method returns a PAPResponse type which must then be cast
to the desired response type for the current push operation.

The last line in the SubmitMsg method calls the private printCCQResponse method,
which prints the pertinent information returned from the PPG in the form of a
CcqResponse object instance:

printCCQResponse(ccqResponse);

If the PPG returns UAProf information, the private printUAProfile method loops
through and prints all of the UAProf information returned.

The main method instantiates the PPG URL object, instantiates a ClientCaps object,
and calls the SubmitMsg method:

try {
ppgURL = new URL(ppgAddress);
ClientCaps ccq = new ClientCaps();
ccq.SubmitMsg();

}

Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 113

WAP Push Library Essentials
Client Capabilities Query Message and Response Example6

Notice that these lines are enclosed in a try block. The catch blocks that make up
the remainder of the main method handle any exceptions that might occur, although
only by printing error text to the console. A more sophisticated application could
implement features to deal with some classes of exceptions automatically.
Regardless of the level of exception handling that you build into your applications,
you should always use try...catch blocks to isolate and report all exceptions.
114 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

7
7Debugging WAP Push Library
Applications

Debugging WAP Push Library applications is a relatively straightforward process.
There are four major areas to examine when debugging:

• Use your Java development tools to ensure that your Java code executes
properly and performs the desired tasks without error.

• Always catch and examine the WapPushException class, which indicates that a
parameter is missing, out of range, or specified improperly, or if a response
from the PPG is missing one or more required elements.

• Always catch and examine the UnknownMediaTypeException class, which indicates
that a method attempted to use an unknown media type. An unknown media
type is a one that is not registered with the MediaTypeRegistry class.

• Catch and examine all other exceptions that your WAP Push Library
application returns. The text message returned in the exception classes should
provide you with enough information to solve any problems in your code. The
WAP Push Library does not contain an internal list of error codes and
messages.

• Examine the PPG response messages.

Debugging Java Code

All professional Java development environments supply sophisticated debugging
tools. At a minimum, you can use these tools to:

• Set breakpoints and watches

• Step through your code line by line and examine the results as each line
executes

• Trace into methods and examine them line by line as they execute

• Examine all threads

• View the call stack

For complete instructions on using your debugging tools, refer to the manuals
accompanying your Java development environment.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 115

Debugging WAP Push Library Applications
Catching and Examining Exceptions7

Exception Handling

The WAP Push Library uses the WapPushException class to throw an exception if a
parameter is missing, out of range, or specified improperly, or if a response from
the PPG is missing one or more required elements. All public constructors and
methods that require one or more parameters throw this exception, as do all of the
message response classes. Your WAP Push Library applications should always
catch and handle these exceptions, which can be very helpful to you during
debugging.

The WAP Push Library generates a BadMessageException if a PAP message is
garbled when the PPG receives it. In that case, the PPG returns the
<badmessage-response> XML element with a message describing the cause of the
exception and a fragment of the garbled submission. All of the WAP Push Library
response classes are designed to instantiate a BadMessageException object and return
the exception message in the response object.

The WAP Push Library throws an UnknownMediaTypeException if an attempt is made
to use an unknown media type. An unknown media type is one that is not
registered with the MediaTypeRegistry class.

Your WAP Push Library applications should always catch and handle these
exceptions.

All other exceptions are handled by the various Java classes that your application
imports. At a minimum, all WAP Push Library applications should import the
following Java exception classes and handle any exceptions they throw:

java.io.IOException
java.io.FileNotFoundException
java.net.MalformedURLException

For complete exception-handling information, refer to the user manuals for your
Java development environment.

Catching and Examining Exceptions

All WAP Push Library applications should catch and examine all exceptions. This
section describes exception handling using both libraries.
116 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

Debugging WAP Push Library Applications
Catching and Examining Exceptions 7

WAP Push Library Exception Handling

Catching and examining all exceptions that your WAP Push Library application
returns is a simple process. First, as mandated by good Java programming practice,
make sure that all methods you write throw any possible exceptions, as in this
example declaration statement:

public SubmitMsg() throws WapPushException, IOException,
MalformedURLException, UnknownMediaTypeException

Then be sure to enclose in a try block all statements that might cause an exception
to be thrown. Finally, use catch blocks to capture and examine any exceptions that
might be thrown in the try block. Good Java programming practice also mandates
the use of try...catch blocks. The example main method demonstrates a basic
exception handling strategy:

public static void main(String[] args) throws WapPushException,
IOException, MalformedURLException, UnknownMediaTypeException

{
try {

ppgURL = new URL(ppgAddress);
CustomContent cc = new CustomContent();
cc.SubmitMsg();

}
//Handle possible exceptions.
catch (BadMessageException exception) {

System.out.println("*** ERROR - bad message exception");
BadMessageResponse response = exception.getResponse();
System.out.println("*** ERROR = " +

response.getBadMessageFragment());
}
catch (WapPushException exception) {

System.out.println("*** ERROR - WapPushException (" +
exception.getMessage() + ")");

}
catch (FileNotFoundException exception) {

System.out.println("*** ERROR - input file not found");
}
catch (MalformedURLException exception) {

System.out.println("*** ERROR - malformed PPG URL");
}
catch (IOException exception) {

System.out.println("*** ERROR - I/O exception");
}
catch (UnknownMediaTypeException exception) {

System.out.println("*** ERROR - Media Type not defined");
}
catch (Exception exception) {

System.out.println("*** ERROR - exception(" +
exception.getMessage() + ")");

}
}//main()
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 117

Debugging WAP Push Library Applications
Examining the PPG Response Message7

Examining the PPG Response Message

In addition to handling exceptions, your WAP Push Library applications should
always examine the response the PPG returns upon receiving a Push Submission.
The WAP Push Library parses the XML document that forms the PPG response
and encapsulates it in a class corresponding to the PAP operation type. For a
complete description of the response message format and content, see “PPG
Response Message” on page 25.

All of the examples in Chapter 5, “SimplePush Class Essentials,” and in Chapter 6,
“WAP Push Library Essentials,” show how to use WAP Push Library methods to
examine the PPG response object. Example code in the accompanying JavaDoc
API reference also shows how to use these methods.
118 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

8
8Tools and Utilities

This chapter describes a tool that helps you send and analyze Push Submissions:
PushIT. The source code for this tool is included. Source code is located in the
following directory.

• PushIT <installroot>\examples\PushIT\src\java
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 119

Tools and Utilities
Using the Push Initiator Tool8

Using the Push Initiator Tool

The Push Initiator Tool (PushIT) provides a an easy way to generate push
operations and view the results.

Starting PushIT

To start the Push Initiator Tool, click the Start button on the Windows taskbar,
select Programs>Openwave WAP Push Library Java 1.0, and then click Push
Initiator Tool.

Push Submission Screen

The Push Submission screen provides everything you need to send a Push
Submission with any payload type. Using this screen, you specify the Push ID,
character set, reference attribute, result notification URL, recipients, delivery
deadlines, Quality of Service, message type and content, HTTP headers, and User
Agent Profile.

Figure 8-1. PushIT Push Submission screen
120 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

Tools and Utilities
Using the Push Initiator Tool 8

PPG Address

The Openwave Push Proxy Gateway (PPG) server provides push functionality to
subscribers and providers. For more information, see “PPG and Client Addresses”
on page 23.

To Set the PPG Address

1 Select View>Options to open the Options dialog box.

2 Click the Connection tab and enter the desired PPG address.
You must enter a fully qualified URL. In most cases, the URL contains a port
and a subdirectory, depending on how the PPG has been configured. Your
provider can give you the exact value.

3 You can also set the client security certificate on this tab, if desired.

4 Click OK to set the PPG address.

Push ID

To have PushIT generate a unique push ID for each Push Submission, select the
Automatic check box. To generate your own push ID, enter the desired push ID.

Recipients

Any Push Submission that you send using PushIT is delivered to all of the
recipients shown in the Recipients list. A recipient address is required for all push
operations. You can select more than one recipient for each Push Submission.
Delivery to more than one recipient is known as multicasting.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 121

Tools and Utilities
Using the Push Initiator Tool8

To Add a New Recipient

1 In the Push Submission screen, click Select to open the Select Recipients dialog
box.

2 Click New Recipient to open the Add Recipient dialog box.

3 In the Recipient field, enter the phone number or ID.
Use numbers only to enter the phone number. For example, enter 8005558000
rather than (800) 555-8000.
The subscriber ID is the subscriber’s delivery ID as created when the subscriber
was provisioned. If you do not know the subscriber ID, contact your provider.
In most cases, the subscriber ID is preferred over a phone number.

4 In the Specifier field, enter the recipient address specifier and then select the
radio button corresponding to the address type.

5 Click OK to close the Add Recipient dialog box.

6 Select the new recipient in the Available Recipients list and then click the >
button to copy the new recipient to the Selected Recipients list.

7 Click OK.
122 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

Tools and Utilities
Using the Push Initiator Tool 8

To Select Recipients

1 In the Push Submission screen, click Select to open the Select Recipients dialog
box.

2 Select the desired recipient in the Available Recipients list.

3 Click the > button to copy the highlighted recipient to the Selected Recipients
list. You can also click the >> button to copy all entries in the Available
Recipients list to the Selected Recipients list.

4 To remove a recipient from the mailing list, select the desired recipient in the
Selected Recipients list.

5 Click the < button to remove the highlighted recipient from the Selected
Recipients list. You can also click the << button to remove all entries from the
Selected Recipients list.

6 Click OK.

To Edit a Recipient

1 Click Select to open the Select Recipients dialog box.

2 Select the desired recipient in the Available Recipients list.

3 Click Edit.

4 Edit the entry.

5 Click OK to submit the changes.

To Delete a Recipient

1 Click Select to open the Select Recipients dialog box.

2 Select the desired recipient in the Available Recipients list.

3 Click Delete.

4 Click OK.

Character Set

PushIT currently supports only UTF-8, an English character set encoding that is
ASCII compatible.

Reference

This item sets the value of the optional source-reference attribute of the
push-message element, which specifies the name of the content provider. This
information allows the PPG operator to identify the message originator. Enter the
desired information.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 123

Tools and Utilities
Using the Push Initiator Tool8

Notify To

Sets the value of the optional ppg-notify-requested-to attribute of the push-message
element, which specifies the URL that the PPG should use for notification of
results of a push message. Enter the desired information.

Deliver Before/After

You can specify that a push be delivered before or after a specified date and time.

• Deliver before To have the push delivery made before a specific time and
date, use the ... buttons to select the date and time, or enter the date and time
directly.

• Deliver after To have the push delivery made after a specific time and date,
use the ... buttons to select the date and time, or enter the date and time directly.

For more information, see “Specifying Push Submission Delivery Timing” on
page 25.

The PPG administrator can change the time and date limitations for delivery
timing. For example, the PPG may not be able to deliver before a time specified
half an hour from the current time and may report an error. Check with the
administrator.

Quality of Service

This item sets the optional delivery qualities required by the push initiator. If the
Quality of Service (QOS) requested cannot be honored, the PPG rejects the entire
push message.

To Set the Quality of Service

1 Click the Quality of Service button to open the Quality of Service dialog box.

2 Select the desired priority, delivery method, and bearer from the drop-down
lists, enter the desired network, then select the Required check boxes as
necessary.

3 Click OK to set the QOS for the Push Submission.
124 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

Tools and Utilities
Using the Push Initiator Tool 8

Push Message

To set the push message and content, follow these steps.

1 Click the Add button to open the Add Content Type dialog box.

2 Select the radio button for the desired content type.

3 Click Next and follow the wizard steps to build the complete push message.
You can build more than one push message to send at a time. All push messages
in the Push Message list are sent when you click the Send button.

4 To edit or delete an existing push message, select the desired message in the
Push Message list and then click the Edit or Delete button.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 125

Tools and Utilities
Using the Push Initiator Tool8

HTTP Headers

To add an additional HTTP header to the Push Submission, follow these steps.

1 Click the HTTP Headers button to open the HTTP Headers dialog box.

2 Click the Add button to open the HTTP Header dialog box.

3 Select the desired header, enter a value, and then click OK.

4 To edit or delete an existing HTTP header, select the desired header from the
list in the HTTP Headers dialog box and then click the Edit or Delete button.

User Agent Profile

Click the Browse button and select the .rdf file that contains the desired User
Agent Profile information.

Preview

Click the Preview button to see the complete XML that contains the Push
Submission.

Send

Click the Send button to send the completed Push Submission.
126 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

Tools and Utilities
Using the Push Initiator Tool 8

PPG Response Log

To have the PPG response information logged to a file, follow these steps.

1 Select View>Options to open the Options dialog box.

2 Click the PPG Response tab.

3 Select the Log Responses check box.

4 Click the ... button to locate a directory and create or select a file, or enter the
file and path directly.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 127

Tools and Utilities
Using the Push Initiator Tool8

Push Cancellation Screen

From the Push Submission screen, you can cancel a Push Submission that you
previously sent using PushIT. To cancel a Push Submission, select the desired push
ID from the drop-down list. If you want to cancel the Push Submission for selected
recipients only, click the Select button and select the desired recipients as described
in “To Select Recipients” on page 123. If you do not select specific recipients, the
Push Submission is canceled for all recipients.

Click the Preview button to see the complete XML containing the Push
Cancellation message. Click the Send button to send the Push Cancellation
message.

Figure 8-2. PushIT Push Cancellation screen
128 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

Tools and Utilities
Using the Push Initiator Tool 8

Status Query Screen

From the Status Query screen you can check the status of a Push Submission that
you previously sent using PushIT. To send a Status Query message, select the
desired push ID from the drop-down list. If you want to retrieve status
information for selected recipients only, click the Select button and select the
desired recipients as described in “To Select Recipients” on page 123. If you do not
select specific recipients, status information is retrieved for all recipients.

Click the Preview button to see the complete XML containing the Status Query
message. Click the Send button to send the Status Query message.

Figure 8-3. PushIT Status Query screen
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 129

Tools and Utilities
Using the Push Initiator Tool8

Client Capabilities Query Page

From the Client Capabilities Query (CCQ) screen you can retrieve CCQ
information for a specific recipient. A CCQ message is a discrete Push Submission
with a unique push ID.

To send a CCQ message, enter the desired push ID or select the Automatic check
box to have PushIT generate a unique push ID for this CCQ message. Enter an
optional application ID if desired. The application ID sets the value of the optional
app-id attribute, which uniquely identifies the application that the push initiator
targets with a subsequent push message.

To select the recipient for which to retrieve CCQ information, click the Select
button and select the desired recipient as described in “To Select Recipients” on
page 123. A CCQ message can be sent to one recipient only.

Figure 8-4. PushIT Client Capabilities Query screen
130 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

Tools and Utilities
Understanding PushIT 8

Understanding PushIT

PushIT is implemented as a Java Package and is built on two levels. The graphical
user interface level is based on the Java Swing classes. Underneath the GUI is the
implementation level, which is based on the WAP Push Library. The different push
operations are implemented through classes that use the WAP Push Library, as
outlined in the following table.

The other classes that make up PushIT are devoted to the GUI. These classes
gather user input and call the appropriate operational classes to build and send the
various push operations. The operational classes implement push operations in a
manner very similar to that described in Chapter 6, “WAP Push Library
Essentials.” Refer to this chapter and to the PushIT source code for detailed
information.

Table 8-1. PushIT operations and classes

PAP operation PushIT class

Cancel Message MsgCancel

Client Capabilities Query MsgClientCapabilitiesQuery

Push Submission: Cache Operation MsgMultiPart

Push Submission: Service Indication MsgMultiPart

Push Submission: Service Loading MsgMultiPart

Status Query MsgQueryStatus
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 131

Tools and Utilities
Understanding PushIT8

132 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

A
ALicense Agreements

Xerces

The Apache Software License, Version 1.1 Copyright (c) 1999 The Apache
Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

• The end-user documentation included with the redistribution, if any, must
include the following acknowledgment:

• “This product includes software developed by the Apache Software
Foundation (http://www.apache.org).”

• Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear.

• The names “Xerces” and “Apache Software Foundation” must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.

• Products derived from this software may not be called “Apache”, nor may
“Apache” appear in their name, without prior written permission of the
Apache Software Foundation.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 133

http://www.apache.org
mailto:apache@apache.org

License Agreements
XercesA

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation and was originally based on software
copyright (c) 1999, International Business Machines, Inc., http://www.ibm.com. For
more information on the Apache Software Foundation, please see
http://www.apache.org.
134 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

http://www.ibm.com
http://www.apache.org

License Agreements
Tomcat A

Tomcat

The Apache Software License, Version 1.1 Copyright (c) 1999 The Apache
Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

• The end-user documentation included with the redistribution, if any, must
include the following acknowledgement:

• “This product includes software developed by the Apache Software
Foundation (http://www.apache.org).”

• Alternately, this acknowledgement may appear in the software itself, if and
wherever such third-party acknowledgements normally appear.

• The names “The Jakarta Project”, “Tomcat”, and “Apache Software
Foundation” must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please
contact apache@apache.org.

• Products derived from this software may not be called “Apache” nor may
“Apache” appear in their names without prior written permission of the
Apache Group.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see http://www.apache.org.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 135

http://www.apache.org
mailto:apache@apache.org
http://www.apache.org

License Agreements
TomcatA

136 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

Glossary

bearer network A network used to carry the

messages of a transport-layer protocol between
physical devices. Multiple bearer networks may
be used over the life of a single push session.

bytecode Content encoding in which the content is
typically a set of low-level instructions and
operands for a targeted hardware (or virtual)
machine.

client A device or application that expects to receive
push content from a server.

content Data stored or generated at an origin
server. Content is typically displayed or
interpreted by a user agent in response to a
request from a push initiator.

content encoding When used as a verb, content
encoding indicates the act of converting a data
object from one format to another. Typically the
resulting format requires less physical space than
the original, is easier to process or store, or is
encrypted. When used as a noun, content
encoding specifies a particular format or
encoding standard or process.

content format Actual representation of content.

device A network entity that is capable of sending
and receiving packets of information and that has
a unique device address. A device can act as both
a client and a server within a given context or
across multiple contexts. For example, a device
can service a number of clients (as a server) while
being a client to another server.

HTTP Hypertext Transfer Protocol. The standard
communication protocol used on the World
Wide Web.

HTTPS Secure Hypertext Transfer Protocol. HTTP
over a Secure Sockets Layer (SSL) or Transport
Layer Security (TLS) connection.

JavaScript A de facto standard language that can be
used to add dynamic behavior to HTML
documents. JavaScript is one of the originating
technologies of ECMAScript.

mobile browser The browser software installed on
a mobile device.

mobile device A mobile phone, PDA, or other
device. Refers to the device hardware.

origin server The server on which a given resource
resides or is to be created. Often referred to as a
web server or an HTTP server.

Push Access Protocol (PAP) A protocol used to send
client content and push-related control
information between a push initiator and a Push
Proxy Gateway.

push framework The entire WAP push system. The
push framework encompasses the protocols,
service interfaces, and software entities that
provide the means to push data to user agents in
the WAP client.

push initiator The entity that originates push
content and submits it to the push framework for
delivery to a user agent on a client.

Push OTA Protocol A protocol used to convey
content between a Push Proxy Gateway and a
specified user agent on a client.

Push Proxy Gateway (PPG) The server that sends
content to the target wireless device. The PPG
acts as an intermediary, connecting the wired and
wireless networks, which would otherwise have
no way of communicating with each other
because they use different communication
protocols.
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 137

Glossary

resource A network data object or service that can
be identified by a URL. Resources may be
available in multiple representations (for
example, multiple languages, data formats, size,
resolutions, and so on) or vary in other ways.

server A device (or application) that passively waits
for connection requests from one or more clients.
A server may accept or reject a connection
request from a client.

user A person who interacts with a user agent to
view, hear, or otherwise use rendered content.

user agent Any software or device that interprets
WML, WMLScript, or resources. User agents
include textual browsers, voice browsers, search
engines, and so on.

web server A network host that acts as an HTTP
server.

WML Wireless Markup Language. A hypertext
markup language used to represent information
for delivery to a mobile device.

WMLScript A scripting language used to program a
mobile device. WMLScript is an extended subset
of the JavaScript scripting language.
138 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

Index

A
address

client 23, 24, 30
Push Proxy Gateway 23, 36, 78

B
BadMessageException class 27, 116

C
Cache Operation 19, 22, 45, 49, 91
CacheOperation class 22, 31
CacheOperationType class 94
CancelMessage class 22, 25, 31, 82, 88, 94, 99, 105
CancelResponse class 25, 108
CcqMessage class 22, 31
CcqResponse class 25, 113
client addresses 23, 24, 30
Client Capabilities Query 18, 22, 61, 109
Client Capabilities Query response 25, 61, 109
Custom Content 19, 22, 96
CustomContent class 22, 31

E
Extensible Markup Language (XML) 17, 21, 23, 26,

28, 116, 118

H
HTML 8
HTTP 23
HTTPS 23

M
MediaTypeRegistry class 115, 116
MimeEntity class 29, 31, 83, 89, 95, 100
mobile browser device 9
multicasting 24

N
nonsecure PPG addresses 24

O
Openwave Developer web site 7, 22

P
PAP operations

Client Capabilities Query 18, 22, 61, 109
Push Cancellation 18, 22, 57, 105
Push Submission 18, 22, 24, 27, 30, 37, 41, 45, 49,

57, 79, 85, 91, 94, 96, 99, 105
Result Notification 18, 25
Status Query 18, 22, 53, 101

PAPResponse class 84, 90, 95, 100, 104, 108, 113
personal digital assistant (PDA) 20
phone 20
Push Access Protocol 17, 21
Push Cancellation 18, 22, 57, 105
Push Cancellation response 25
Pusher class 23, 28, 29, 31, 78, 84, 90, 95, 100, 104,

108, 113
push initiator 17, 28, 57, 105
PushMessage class 22, 24, 25, 29, 30, 31, 82, 83, 88, 94,

99
Push Proxy Gateway 17, 23, 28

addresses 23, 30, 36, 78
PushResponse class 25, 72, 84, 90, 95, 100
Push Submission 18, 21, 22, 24, 25, 30, 37, 41, 45, 49,

57, 79, 85, 91, 94, 96, 99, 105
Push Submission content types

Cache Operation 19, 22, 45, 49, 91, 96
Custom Content 19, 22
Service Indication 19, 22, 37, 79
Service Loading 19, 22, 41, 85

Push Submission identification 25, 82, 88, 94, 99, 105
Push Submission response 25
Release 1.0 CONFIDENTIAL AND PROPRIETARY Developer’s Guide 139

Index

Q
Quality of Service 89
QualityOfService class 44

R
response message types

Client Capabilities Query response 25, 61, 109
Push Cancellation response 25
Push Submission response 25
Status Query response 25, 27, 53, 101

Result Notification 18, 25

S
secure PPG addresses 24
Secure Sockets Layer 21
Service Indication 19, 22, 37, 79
ServiceIndication class 22, 31
ServiceIndicationInfo class 83
Service Loading 19, 22, 41, 85
ServiceLoading class 22, 31
SimplePush 32
SimplePush class 12, 35, 37, 40, 41, 44, 45, 48, 49, 52,

53, 56, 57, 60, 61, 64, 65, 72, 73
source code

PushIT 13, 119
TravelDemo 13

SSL 21
Status Query 18, 22, 53, 101
StatusQueryMessage class 22, 25, 31, 82, 88, 94, 99,

101
Status Query response 25, 27, 53, 101
StatusQueryResponse class 25, 74, 104
StatusQueryResult class 27, 53, 101

T
TLS 21
Transport Layer Security 21

U
UAProfile class 113
UnknownMediaTypeException class 115, 116
User Agent Profile 61, 109

W
WapPushException class 27, 115, 116
Wireless Application Protocol Forum 8
WML 8
World Wide Web (WWW) 8

X
XML 8, 17, 21, 23, 26, 28, 116, 118
140 Developer’s Guide CONFIDENTIAL AND PROPRIETARY Release 1.0

	Developer’s Guide
	Legal Notice
	Contents
	About This Book
	Openwave SDK
	Audience and Prerequisites
	Style and Typographical Conventions
	Code Examples

	Other Documentation

	Getting Started
	Requirements
	WAP Push Library Package Overview
	Libraries
	Tools and Utilities
	Examples

	WAP Push Developer Resources
	WAP Gateway for Openwave Developers

	Installation and Configuration
	Installing and Configuring
	Using the Example
	Travel

	Push Access Protocol Overview
	About the Push Access Protocol
	PAP Operations
	Push Submission Content Types
	Device Types
	How the WAP Push Library Implements PAP
	System Configuration Requirements

	WAP Push Library Overview
	WAP Push Library Basics
	PAP operations
	Push Submission Content Types
	PPG and Client Addresses
	Multicasting
	Push Submission Identification
	Specifying Push Submission Delivery Timing
	PPG Response Message
	Exception Handling

	WAP Push Library Architecture Overview
	Sending a Push Submission
	Sending a Service Indication using the WAP Push Library

	SimplePush Class Essentials
	Required Import Statements
	PPG and Client Addresses
	SimplePush Class Basics
	Service Indication Payload Example
	What It Does
	How It Works

	Service Loading Payload Example
	What It Does
	How It Works

	Cache Operation Payload Example
	What It Does
	How It Works

	Custom Content Payload Example
	What It Does
	How It Works

	Status Query Message and Response Example
	What It Does
	How It Works

	Push Cancel Message and Response Example
	What It Does
	How It Works

	Client Capabilities Query Message and Response Example
	What It Does
	How It Works

	Travel Example
	What It Does
	How It Works

	WAP Push Library Essentials
	Required Import Statements
	WAP Push Library Application Basics
	PPG and Client Addresses
	Service Indication Payload Example
	What It Does
	How It Works

	Service Loading Payload Example
	What It Does
	How It Works

	Cache Operation Payload Example
	What It Does
	How It Works

	Custom Content Payload Example
	What It Does
	How It Works

	Status Query Message and Response Example
	What It Does
	How It Works

	Push Cancel Message and Response Example
	What It Does
	How It Works

	Client Capabilities Query Message and Response Example
	What it Does
	How It Works

	Debugging WAP Push Library Applications
	Debugging Java Code
	Exception Handling
	Catching and Examining Exceptions
	WAP Push Library Exception Handling

	Examining the PPG Response Message

	Tools and Utilities
	Using the Push Initiator Tool
	Starting PushIT
	Push Submission Screen
	Push Cancellation Screen
	Status Query Screen
	Client Capabilities Query Page

	Understanding PushIT

	License Agreements
	Xerces
	Tomcat

	Glossary
	Index
	A
	B
	C
	E
	H
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

