Zeldman 10 CSS Layout

Block box (block-level elements e.g. <p> <h2> <div>
vs.
Inline box (inline elements e.g. these sit on a line, will wrap, don't add a return.

All boxes follow the basic model:

Content

Padding
Border
Margin

[As Zeldman says, the margin is artificially filled; actually only the border takes a color. The element's box ends with the border as shown; the margin is the space between it and other elements. Vertically stacked boxes will collapse their margins]

Margin

There's no property like this
content: 300px;
but width: 300px;
does what you'd think content: 300px does.

The default Box Model adds content (width) + padding + borders. So
#sidebar {
	width: 400px;
	padding: 50px;
	border: 2px;
}
has a width of 2+50+400+50+2 = 504px
However, you can now override how boxes are calculated. Most developers use
	box-sizing: border-box;
which overrides the default of :content-box, so that padding and border don’t make the width: increase (clear?)

Default is all 4 sides.
padding: 50px
(Shorthands are important for download (what if there were hundreds of these rules) and also to show that you know your standards-based CSS. [font: is another common one, as are hex codes #abc; What are some others?]

For 2 sides at a time use
padding: 20px 30px;
which means
padding-top: 20px;
padding-bottom: 20px;
padding-right: 30px;
padding-left: 30px;

[For 3

padding 20px 30px 25px;

padding-top: 20px;
padding-right: 30px;
padding-left: 30px;
padding-bottom: 25px;

Multiple values are read clockwise [Note: no commas. Generally multiple values are separated by commas as with font-family: or rgb(). Also no apce between numbers and unit 20px; NOT 20 px;]:
padding: 5px 10px 15px 20px;
is the same as
padding-top: 5px
padding-right: 10px;
padding-bottom: 15px;
padding-left: 20px;

[Some people say remember the order is TRBL or you're in trouble.]

So padding: 20px 30px; is the same as padding: 20px 30px 20px 30px;

Example Layout #1. Think semantics first. Then design. Two <p> [but maybe picture goes in a <div> since it's NOT a paragraph?]
Then style

body {
font: normal 16px/24px Georgia, Times, serif;
}
Note what that saves in terms of markup with HTML tags. [this is shorthand for
font-weight: normal;
font-size: 16px;
line-height: 24px;
font-family: Georgia, Times, serif;
]
p {
text-indent: .1em;
}
This is an example of a property that HTML didn't have. Also it applies to all <p> at once.

Then add a class for first p [or <div>

.figure {
padding: 10px;
margin-right: 1em;
float: left;
}
<div class="figure">
[this way you wouldn't need to reset text-indent: 0 because div {} has not been styled]

Make the block level

.figure img {
	display: block;
	margin-bottom: .5 em;
}

Floats: Non-floated neighbors "float" to the top and text wraps around, although floated element sits on top of non-floated box. [Also it's usually best practice to declare a width: with floats which he doesn't do here. Let's keep an eye on that]

Layout #2
Sketch it out:

.info
 <h1> 844px
124px
124px
 <h2> and also .content 844px
988px
.main
700px
.meta

Here we need content <div>s. He uses
<div id="page">
	<div class="entry">
		<div class="content">
			<div class="main">
				<div class="figure">
				<p> etc.
				</div> <!-- end .figure-->
			</div> <!--end main-->
			<div class="meta">
			</div>
		</div>
	</div>
	<div id="footer">
	</div>
</div>

Use of <h1> <h2> <h3 class="info"> lots of <p>

Add class names to earlier markup where needed, e.g.
.figure img {} becomes
.entry .main .figure img {}

#page {
	width: 988px;
	margin: 0 auto 40px;
}
If three values, it's Top Left/Right Bottom.

[This is a common auto margins centering technique. Note page div is a container (often use <div id="container">. Be warned that this doesn't always work.]
First element is an <h1> that he does not float (everything else is floated)
h1 {
	margin-left: 144px;
	width: 844px;
}
Float the <h3 class="info"> to the left (left floats go first then float <h2> to the right; should also work if you float it to the left:
float: left
float: left

Float other items :left or :right. Note they do have width: generally a best practice. Note (p. 210) floats weren't designed to do layout [any more than tables were.] Note <h1> is still not floated. [Alternative is position: absolute or :relative]

These floats will look like this. Note that they are all inside the <div class=”entry”>:

.entry h2 {
	float: right;
	width: 844px;
}
.entry .info {
[bookmark: _GoBack]	float: left;
	width: 124px;
}
.entry .content {
	float: right;
	width: 844px;
}
.entry .main {
	float: left;
	width: 700px;
}
.entry .meta {
	float: right;
	width: 124px;
}
[On p. 211 near the bottom he says "meta" occupies the first 700px. He means "main"]

#footer { clear: both;}
also a common technique [clear: left; and :right are sort of counter-intuitive]
