	CSIT 301

Binary Number Lab

Jan. 31, 2019
	Name: _____________________________

1. Interpret the following eight-bit binary string

	1
	0
	0
	1
	0
	1
	0
	1

	A. As a signed integer
	

	B. As an unsigned integer
	

	C. Convert it to hex
	

2a. What is the largest unsigned integer (positive numbers only) that can be represented using 24 bits?

	

2b. What is the largest signed integer (positive and negative numbers) that can be represented using 24 bits?

	

2c. What is the largest float that can be represented using 24 bits if one has 1 bit for the sign, 16 bits for the mantissa and 7 bits for exponent?

	

3. Convert the following decimal numbers into 16-bit binary and hexadecimal representations.

	Decimal
	16-bit Binary
	Hex

	378
	
	

	83
	
	

	-83
	
	

4. Represent the following fractions as a (fixed-point) binary number. Use eight bits for the whole number and eight bits for the fraction.
	Decimal
	Fixed-point binary

	38.890
	

	45.3125
	

5. Perform the following binary addition

	
	
	
	
	

	
	1
	0
	1
	0

	+
	1
	1
	1
	1

	
	
	
	
	

If we are using only four bits to represent the numbers, then the result of the above addition is an example of _________________.
6. Let us assume for now that the numbers we are representing are unsigned integers (i.e. non-negative integers). If we use N bits, what is the largest unsigned integer we can represent (assuming the lowest is 0)?

	N=4:
N=8:

N=12:

N=16:

N=20:

N=24:

N=28:

N=32:

The following C++ program prints out the powers of 2, and would naively go on forever. The variable is declared as unsigned (positives only).

	
	

	#include "pch.h"
#include <iostream>
int main()

{

 std::cout << "Hello World!\n";

// not an infinite loop

// use to demonstrate overflow

unsigned previous;

unsigned current;

current = 1;

do

{

previous = current;

current = 2 * previous;

std::cout << current;

std::cout << "\n";

} while (previous < current);

}
	Hello World!

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

8388608

16777216

33554432

67108864

134217728

268435456

536870912

1073741824

2147483648

0

Why is not an infinite loop? Note the C++ program does not end on an error (which overflow would be) so look at the condition for the loop and ask yourself how it could be false. (A Java program would end on an error – but not C++.)
	Reason not infinite loop (unsigned version):

What is the largest unsigned integer allowed by the compiler? Be careful, the program displays the largest power of two, which is not the largest number.

	Largest number (unsigned version):

How many bits does it use to represent an unsigned integer?

	Number of bits (unsigned version):

6b. Repeat the above exercise with previous and current declared as int’s.

	#include "pch.h"
#include <iostream>
int main()

{

 std::cout << "Hello World!\n";

// not an infinite loop

// use to demonstrate overflow

int previous;

int current;

current = 1;

do

{

previous = current;

current = 2 * previous;

std::cout << current;

std::cout << "\n";

} while (previous < current);

}
	Hello World!

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

4194304

8388608

16777216

33554432

67108864

134217728

268435456

536870912

1073741824

-2147483648

	Reason not infinite loop (int version):

	Largest number (int version):

	Number of bits (int version):

6c. Repeat the above exercise with previous and current declared as float’s.

	#include "pch.h"
#include <iostream>
int main()

{

 std::cout << "Hello World!\n";

// not an infinite loop

// use to demonstrate overflow

float previous;

float current;

current = 1;

do

{

previous = current;

current = 2 * previous;

std::cout << current;

std::cout << "\n";

} while (previous < current);

}
	Hello World!

2

4

8

16

32

64

128

256

512

…

…

5.31691e+36

1.06338e+37

2.12676e+37

4.25353e+37

8.50706e+37

1.70141e+38

inf

inf

	Reason not infinite loop (float version):

7. Two’s complement. Note that -67 is that number which when added to +67 gives zero. Assuming we are using eight bits to represent a number calculate the two’s complement of 67. First replaces 1’s with 0’s and vice versa.

	0
	1
	0
	0
	0
	0
	1
	1

	
	
	
	
	
	
	
	

Next add 1 to your result.

	
	
	
	
	
	
	
	
	

	+
	0
	0
	0
	0
	0
	0
	0
	1

	
	
	
	
	
	
	
	
	

Now demonstrate that 67 + (-67) = 0

	
	0
	1
	0
	0
	0
	0
	1
	1

	+
	
	
	
	
	
	
	
	

	
	0
	0
	0
	0
	0
	0
	0
	0

Then add 47 and –67.

	
	
	
	
	
	
	
	
	

	+
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Does the answer make sense? How do you know?

	

8. Negative numbers can be constructed in other bases in a manner similar to two’s complement, i.e., ask yourself what should be added to get a zero in a particular position.

Construct the 10's complement of the decimal number 473.

	
	4
	7
	3

	+
	
	
	

	
	0
	0
	0

Construct the 16's complement of the hexadecimal number 26B.

	
	2
	6
	B

	+
	
	
	

	
	0
	0
	0

9a. Express 8675.309 as a float. Use 1 bit for the sign, 23 bits for the mantissa, and 8 bits for the exponent. Use a bias of 127 for the exponent.

Write an expression for 8675. Ignoring any leading zeros, how many bits does it use?

	8675 in binary:
of bits for whole number:

If we are going to use 24 bits (23 stored & one “implied”), how many are left for the fractional part? Write an expression for the fraction. This time include any leading zeros.

	# of bits for fraction:
Binary expression for .309:

How many shifts are required to move the dot separating whole number and fraction to where there is only one digit (a 1) in the whole number? What is the effect of “biasing” on the number?
	Number of shifts:
Effect of biasing

Put the pieces together.

Sign

	

Exponent

	
	
	
	
	
	
	
	

Mantissa

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Paste below a screen capture showing the “check” on your answer produces a result close to the original 8675.309.
9b. Express 0.001492 as a float. Use 1 bit for the sign, 23 bits for the mantissa, and 8 bits for the exponent. Use a bias of 127 for the exponent.

Multiply the number by 2^24 and convert the whole number portion of the result to binary. How many bits are you short of the desired 24?
	Multiply and convert:

How many bits “missing”?

Repeat above but multiply by 2^(24+missing_number).

	

Use the missing_number and the bias of 127 to determine the exponent.

	

Put the pieces together.
Sign

	

Exponent

	
	
	
	
	
	
	
	

Mantissa

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Paste below a screen capture showing the “check” on your answer produces a result close to the original 0.001492.

10. Express the following float as a decimal number.

Sign

	1

Exponent

	1
	0
	1
	1
	0
	0
	0
	1

Mantissa

	1
	1
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1
	0

	The decimal number can be expressed as
(-1)^(sign)*(number between 1 and 2 from mantissa)*2^(number from “un-biasing” the exponent)

number between 1 and 2 from mantissa

number from “un-biasing” the exponent

Put the pieces together and calculate

	

Paste below a screen capture showing the “check” on your answer.

11. The following program and data are stored in memory. Determine the value in the accumulator just before executing each line.

	Address
	Value
	Value in Accumulator A

	0
	LOAD INDIRECT 8
	XXX

	1
	ADD IMMEDIATE 6
	

	2
	ADD 7
	

	3
	STOP
	

	4
	7
	

	5
	8
	

	6
	9
	

	7
	5
	

	8
	6
	

	9
	4
	

12. Determine the value of the control pins for the timing states of an STA (store accumulator) instruction.

	
	Program Counter Enable

(Active High)
	Program Counter Load

(Active High)
	Program Counter Increment

(Active High)
	Memory Address Register Load

(Active High)
	Memory Read

(Active High)
	Memory Write

(Active High)
	Memory Data Register Enable

(Active High)
	Memory Data Register Load

(Active High)
	Instruction Register Enable

(Active High)
	Instruction Register Load

(Active High)
	Accumulator Enable

(Active High)
	Accumulator Load

(Active High)
	ALU Add

(Active High)
	ALU Enable (Active high)
	TMP Register Load

(Active High)
	TMP Register Enable

(Active High)

	Address state

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Increment state
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Memory State

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Instr. Address to MAR
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	ACC to Memory
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	No-op

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

