8. Negative numbers can be constructed in other bases in a manner similar to two’s complement, i.e., ask yourself what should be added to get a zero in a particular position.

Construct the 10's complement of the decimal number 473.

	
	4
	7
	3

	+
	
	
	

	
	0
	0
	0

Construct the 16's complement of the hexadecimal number 26B.

	
	2
	6
	B

	+
	D
	9
	5

	(1)
	0
	0
	0

9a. Express 8675.309 as a float. Use 1 bit for the sign, 23 bits for the mantissa, and 8 bits for the exponent. Use a bias of 127 for the exponent.

Write an expression for 8675. Ignoring any leading zeros, how many bits does it use?

	8675 in binary: 10000111100011
of bits for whole number: 14

If we are going to use 24 bits (23 stored & one “implied”), how many are left for the fractional part? Write an expression for the fraction. This time include any leading zeros.

	# of bits for fraction: 10
Binary expression for .309: .309*2^10 = 316.416 (316 (0100111100

How many shifts are required to move the dot separating whole number and fraction to where there is only one digit (a 1) in the whole number? What is the effect of “biasing” on the number?
	Number of shifts: 13
Effect of biasing 13+127= 140 (10001100

Put the pieces together.

Sign

	0

Exponent

	1
	0
	0
	0
	1
	1
	0
	0

Mantissa

	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	1
	0
	1
	0
	0
	1
	1
	1
	1
	0
	0

Paste below a screen capture showing the “check” on your answer produces a result close to the original 8675.309.
9b. Express 0.001492 as a float. Use 1 bit for the sign, 23 bits for the mantissa, and 8 bits for the exponent. Use a bias of 127 for the exponent.

Multiply the number by 2^24 and convert the whole number portion of the result to binary. How many bits are you short of the desired 24?
	Multiply and convert: 0.001492*2^24 =25031.606272 (25031(000000000110000111000111
How many bits “missing”? 9

Repeat above but multiply by 2^(24+missing_number).

	0.001492*2^(24+9)= 12816182.411264(12816182(110000111000111100110110

Use the missing_number and the bias of 127 to determine the exponent.

	-10 +127 (01110101

Put the pieces together.
Sign

	0

Exponent

	0
	1
	1
	1
	0
	1
	0
	1

Mantissa

	1
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	1
	1
	1
	1
	0
	0
	1
	1
	0
	1
	1
	0

Paste below a screen capture showing the “check” on your answer produces a result close to the original 0.001492.

10. Express the following float as a decimal number.

Sign

	1

Exponent

	1
	0
	1
	1
	0
	0
	0
	1

Mantissa

	1
	1
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1
	0

	The decimal number can be expressed as
(-1)^(sign)*(number between 1 and 2 from mantissa)*2^(number from “un-biasing” the exponent)

number between 1 and 2 from mantissa

111000110001100011000110 (14883014
14883014/2^23=1.7741935253143310546875
number from “un-biasing” the exponent

10110001 (177
177 – 127 (unbias) = 50

Put the pieces together and calculate

	(-)1.7741935253143310546875*2^50
-1997564324872192
-1997564324872192

Paste below a screen capture showing the “check” on your answer.

11. The following program and data are stored in memory. Determine the value in the accumulator just before executing each line.

	Address
	Value
	Value in Accumulator A

	0
	LOAD INDIRECT 8
	XXX

	1
	ADD IMMEDIATE 6
	9

	2
	ADD 7
	9+6=15

	3
	STOP
	15+5=20

	4
	7
	

	5
	8
	

	6
	9
	

	7
	5
	

	8
	6
	

	9
	4
	

12. Determine the value of the control pins for the timing states of an STA (store accumulator) instruction.

	
	Program Counter Enable

(Active High)
	Program Counter Load

(Active High)
	Program Counter Increment

(Active High)
	Memory Address Register Load

(Active High)
	Memory Read

(Active High)
	Memory Write

(Active High)
	Memory Data Register Enable

(Active High)
	Memory Data Register Load

(Active High)
	Instruction Register Enable

(Active High)
	Instruction Register Load

(Active High)
	Accumulator Enable

(Active High)
	Accumulator Load

(Active High)
	ALU Add

(Active High)
	ALU Enable (Active high)
	TMP Register Load

(Active High)
	TMP Register Enable

(Active High)

	Address state

	1
	
	
	1
	
	
	
	
	
	
	
	
	
	
	
	

	Increment state
	
	
	1
	
	
	
	
	
	
	
	
	
	
	
	
	

	Memory State

	
	
	
	
	1
	
	1
	
	
	1
	
	
	
	
	
	

	Instr. Address to MAR
	
	
	
	1
	
	
	
	
	1
	
	
	
	
	
	
	

	ACC to Memory
	
	
	
	
	
	1
	
	1
	
	
	1
	
	
	
	
	

	No-op

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

