	CSIT 301
	Name: _____________________________

More binary including stacks, postfix, etc.
1. Fill in the table below with the corresponding infix or postfix expression.

	Infix to Postfix

	 6 * 3 + (7 + 5) * 4 * 8 +1

	 6 * 3 + (7 + 5) * 4 * 8 +1
 6 3 * + 7 5 + * 4 * 8 +1

 6 3 * + 7 5 + 4 * * 8 +1
 6 3 * + 7 5 + 4 * 8 * +1
6 3 * 7 5 + 4 * 8 * + +1

6 3 * 7 5 + 4 * 8 * +1 +

	(9 + 6) * ((5 + 3) * (8 + 4 * 7))

	

	Postfix to Infix

	5 3 6 + 8 + * 7 2 9 + * *

	5 3 6 + 8 + * 7 2 9 + * *
5 (3 + 6) 8 + * 7 2 9 + * *

5 ((3 + 6) + 8) * 7 2 9 + * *

(5 * ((3 + 6) + 8)) 7 2 9 + * *

(5 * ((3 + 6) + 8)) 7 (2 + 9) * *

(5 * ((3 + 6) + 8)) (7 * (2 + 9)) *

((5 * ((3 + 6) + 8)) * (7 * (2 + 9)))

	7 6 5 2 * 4 3 8 9 + * + * + *

	

2. Show the state of the stack at each stage of the following postfix calculation. Use a column of the table to represent what’s on the stack at that stage. Start at the left and proceed to the right.
4 3 7 + 8 1 + * 6 + + 9 * 2 +
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	3
	
	
	
	
	
	
	
	
	
	
	
	
	

	4
	4
	
	
	
	
	
	
	
	
	
	
	
	
	

Time
3. The following program and data are stored in memory. Determine the value in the accumulator just before executing each line.
	Address
	Value
	Value in Accumulator A

	0
	LOAD IMMEDIATE 6
	XXX

	1
	ADD 5
	

	2
	ADD INDIRECT 4
	

	3
	STOP
	

	4
	7
	

	5
	9
	

	6
	8
	

	7
	6
	

	8
	5
	

	9
	4
	

4. Determine the Hamming-code parity bits for the following two sets of data. Assume even parity.
	0001
	0010
	0011
	0100
	0101
	0110
	0111
	1000
	1001
	1010
	1011
	1100
	1101
	1110
	1111

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	
	
	1
	
	1
	0
	0
	
	0
	1
	1
	1
	0
	1
	0

	
	
	1
	
	0
	1
	1
	
	1
	0
	1
	0
	1
	1
	0

5. Assuming a single-bit error and even parity, locate the offending bit from the two following sets of information.
	0001
	0010
	0011
	0100
	0101
	0110
	0111
	1000
	1001
	1010
	1011
	1100
	1101
	1110
	1111

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	1
	1
	1
	1

	0
	1
	0
	0
	0
	1
	1
	1
	0
	1
	1
	1
	1
	1
	0

	Groups violating parity
	Offending bit

	
	

	
	

6. Supply the parity bit for the bytes below.
	Use odd parity

	0
	0
	0
	1
	0
	1
	1
	0
	

	1
	0
	1
	1
	0
	1
	1
	0
	

	1
	1
	1
	1
	0
	1
	0
	1
	

	Use even parity

	1
	1
	0
	1
	0
	1
	0
	1
	

	0
	1
	1
	0
	1
	1
	1
	0
	

	1
	0
	1
	0
	1
	1
	0
	0
	

	Use mark parity

	1
	1
	0
	1
	0
	1
	1
	1
	

	0
	1
	0
	1
	0
	0
	1
	0
	

	1
	0
	1
	1
	0
	0
	1
	0
	

	Use space parity

	1
	1
	1
	1
	0
	1
	1
	0
	

	0
	1
	0
	1
	1
	1
	0
	0
	

	1
	0
	1
	10
	1
	1
	0
	1
	

7. Enter the binary string into the CRC generator, taking bits from the left. Note the first four bits just shift in. Until there is a 1 in the leftmost position, it is just simple shifting.

	0
	
	0
	0
	0
	
	
	10011011001

	
	
	
	
	
	
	
	

	1
	
	0
	0
	1
	
	
	1011001

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	011001

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	11001

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	1001

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	001

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	01

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	1

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

8. Transpose two neighboring bits (one should be a zero, the other a one) in the above binary string and repeat the exercise.
	0
	
	0
	0
	0
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

9. Suppose you have the 32-bit integer written in Hex as 9DCBFA3D. How would it be stored in memory in a system using the big-endian approach?
	Big-endian

	Memory Location
	Value

	500
	

	501
	

	502
	

	503
	

	504
	

	505
	

	506
	

	507
	

	508
	

10. Suppose you have the 32-bit integer written in Hex as 637FC0E8. How would it be stored in memory in a system using the little-endian approach?
	Little-endian

	Memory Location
	Value

	500
	

	501
	

	502
	

	503
	

	504
	

	505
	

	506
	

	507
	

	508
	

11. What are the ASCII values for ACK (special character for acknowledge) and NAK?

12a. Express -9835.3487 as a float. Use 1 bit for the sign, 23 bits for the mantissa (24 if you include the implied 1), 8 bits for the exponent. Use a bias of 127 for the exponent.
Write an expression for 9835. Ignoring any leading zeros, how many bits does it use?
	9835 in binary:

of bits for whole number:

If we are going to use 24 bits (23 stored & one “implied”), how many are left for the fractional part? Write an expression for the fraction. This time include any leading zeros.
	# of bits for fraction:

Binary expression for .3487:

How many shifts are required to move the dot separating whole number and fraction to where there is only one digit (a 1) in the whole number? What is the effect of “biasing” on the number?
	Number of shifts:

Effect of biasing

Put the pieces together.
Sign

	

Exponent

	
	
	
	
	
	
	
	

Mantissa

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Paste below a screen capture showing the “check” on your answer produces a result close to the original -9835.3487.
12b. Express the following float as a decimal number.
Sign

	0

Exponent

	0
	0
	1
	1
	1
	0
	0
	1

Mantissa

	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1

	The decimal number can be expressed as

(-1)^(sign)*(number between 1 and 2 from mantissa)*2^(number from “un-biasing” the exponent)

number between 1 and 2 from mantissa

number from “un-biasing” the exponent

Put the pieces together and calculate
	

Paste below a screen capture showing the “check” on your answer.
Express the following float as a decimal number. Show any intermediate steps.
