Using the constants provided with the equations, evaluate the energy from the Bohr model of Hydrogen for the n=2 and n=3 energy levels.

$$E = -\frac{m_{e}K^{2}e^{4}}{2n^{2}h^{2}} = -\frac{(9.11\times10^{-81})(8.99\times10^{9})^{2}(1.602\times10^{-19})^{4}}{n^{2}(2)(1.05\times10^{-34})^{2}}$$

$$= -2.199\times10^{-18}$$

$$= -2.199\times10^{-18}$$

$$= -2.4975\times10^{-19}$$
 Joules
$$= (n=3)^{2} - 2.4433\times10^{-19}$$
 Joules

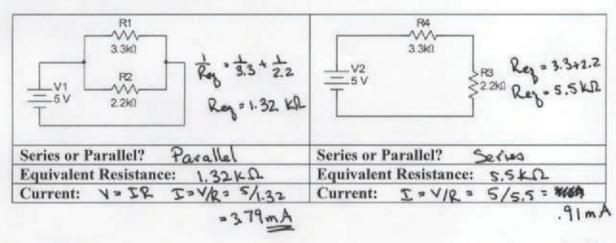
If a photon were emitted by an atom in the n=3 level and resulting in an n=2 level, then what frequency of light would result?

$$\Delta E = E(n=3) - E(n=2) = hf$$

$$-2.4433 \times 10^{-19} - (-5.4975 \times 10^{-19}) = (6.63 \times 10^{-34}) f$$

$$3.0542 \times 10^{-19} = (6.63 \times 10^{-34}) f$$

$$f = 4.61 \times 10^{14} Hz$$


What would be the associated wavelength?

$$V = f \lambda$$
 $3 \times 10^8 = 4.61 \times 10^{14} \lambda$
 $\lambda = 6.50 \times 10^{-7} \text{ m}$

= 650 × 10⁻⁹ m

= 650 nm Red color from palmer series

Ohms Law and combinations of resistors

