3. \(h = 5.25 \) \\
\(p_1 = 9.75 \) \\
\(f_1 = 5.50 \) \\
\(D = 15.25 \) \\
\(f_2 = -4.75 \) \\
\[
\frac{1}{p_1} + \frac{1}{q_1} = \frac{1}{f_1},
\]
\[
\frac{1}{9.75} + \frac{1}{q_1} = \frac{1}{5.50}
\]
\(q_1 = 12.62 \)
\[
p_2 = D - q_1 = 2.63
\]
\[
\frac{1}{p_2} + \frac{1}{q_2} = \frac{1}{f_2}
\]
\[
\frac{1}{2.63} + \frac{1}{q_2} = \frac{1}{-4.75}
\]
\(q_2 = -1.69 \text{ cm} \)

The final image location is 1.69 cm to the left (in front of) lens 2.

\(h = \frac{(1.69)(12.62)(5.25)}{(2.63)(9.75)} = 4.37 \text{ cm} \)

Diagram:
The diagram shows the setup with labeled parts: original object, center, image of lens 1, object from lens 1, image of lens 2, lens 1, lens 2, and inverted virtual images.