PHYSICS 201
LAB 1

Part 1. Binary and hexadecimal numbers.

All of the information stored in and processed by a computer is represented in bits (binary digits, 1's and 0's). Why?

Convert the following decimal numbers into binary and hexadecimal.

	Decimal
	Binary
	Hex

	97
	
	

	174
	
	

	121
	
	

Convert the following binary numbers into decimal.

	Binary
	Decimal
	Hex

	10101010
	
	

	11011100
	
	

	00101000
	
	

Part 2. I/O Addresses in hexadecimal notation.

Data coming going out of a computer is rarely sent directly from the processor. Output devices are slow, and the microprocessor has other things it could be doing. Memory is faster than I/O devices, so the data is sent to a special part of memory, where the device can pick it up at its leisure. This is referred to as memory-mapped I/O. A part of memory is sectioned off for use by the I/O devices. This section is divided among the I/O devices, and of course, the various locations are assigned addresses. On the computer you are at go to Start/Control Panel/Performance and MaintenanceSystem/Hardware/Device Manager. You may get a message about “insufficient security privileges” but proceed; we will only be looking. Click on the plus sign next to the Floppy Disk Controller. Double click on Standard Floppy Disk Controller. Click on the Resources tab. Find the range(s) of memory allocated to floppy. Enter the hexadecimal range in the table below. Addresses often appear in hexadecimal (base 16). Convert it to binary.

	Memory Range
	Hexadecimal
	Binary

	Lowest Value
	
	

	Upper Value
	
	

	Lower Value
	
	

	Upper Value
	
	

How many memory locations (words) do the above correspond to (combined)? (Please put your answer in decimal.)

	

The microprocessor usually carries on without regard for either input or output devices. But sometimes processing must be interrupted to deal with an I/O device. An I/O device makes a request to interrupt the processor. There is one wire signaling the processor that an interrupt has been requested. After the processor decides to allow for the interruption, it needs to determine which device made the request. This is again a kind of addressing. The I/O devices are assigned an IRQ.

How many IRQs are there? (Try http://www.pcguide.com/ref/mbsys/res/irq/num.htm)

	

What is the IRQ for the floppy?

	

How many bits are required to represent such an IRQ address?

	

Part 3. Overflow.

Let us assume for now that the numbers we are representing are unsigned integers (i.e. non-negative integers). If we use N bits, what is the largest unsigned integer we can represent (assuming the lowest is 0)?

	

If we add two integers whose sum exceeds our largest integer, we say we have an "overflow."

The following C++ program prints out the powers of 2, and would naively go on forever. The variable is declared as unsigned (positives only).

// not an infinite loop

// use to demonstrate overflow

unsigned num;

num=1;

while(num>=1)

{

num=2*num;

Console::WriteLine(num);

}

return 0;

Use the instructions on the PowerPoint presentation VS0025_C to run the above program. Copy the results below.

	Output from code:

Why is not an infinite loop? Note the program does not end on an error (which overflow would be) so look at the condition for the loop and ask yourself how it could be false.

	

What is the largest unsigned integer allowed by the compiler I used? Be careful, the program displays the largest power of two, which is not the largest number.

	

How many bits does it use to represent an unsigned integer?

	

Part 4. Negative Numbers.

Let us extend our representation to include negative numbers. Note that -42 is that number which when added to +42 gives zero. Assuming we are using eight bits to represent a number calculate the two’s complement of 42. First replaces 1’s with 0’s and vice versa.

	0
	0
	1
	0
	1
	0
	1
	0

	
	
	
	
	
	
	
	

Next add 1 to your result.

	
	
	
	
	
	
	
	
	

	+
	0
	0
	0
	0
	0
	0
	0
	1

	
	
	
	
	
	
	
	
	

Now demonstrate that 42 + (-42) = 0

	
	0
	0
	1
	0
	1
	0
	1
	0

	+
	
	
	
	
	
	
	
	

	
	0
	0
	0
	0
	0
	0
	0
	0

Repeat the steps above to find –73. (0’s (1’s)

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

And add 1.

	
	
	
	
	
	
	
	
	

	+
	0
	0
	0
	0
	0
	0
	0
	1

	
	
	
	
	
	
	
	
	

Then add 42 and –73.

	
	
	
	
	
	
	
	
	

	+
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Does the answer make sense? How do you know?

	

Part 5. More on Negative Numbers

If we use 16 bits, what is the largest integer (signed) we can represent?

	

What is its binary representation?

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

What is the smallest (most negative) integer?

	

What is its binary representation?

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

The following program is like that considered earlier but with the variable declared as an integer (positive or negative).

// not an infinite loop

// use to demonstrate overflow

int num;

num=1;

while(num>=1)

{

num=2*num;

Console::WriteLine(num);

}

return 0;

	Output from code:

Why is it not an infinite loop? And where did that negative number at the end come from?

	

What is the largest integer allowed by this compiler?

	

How many bits does it use to represent integer?

	

Part 6. Negative Numbers in Other Bases

Construct the 10's complement of the decimal number 376.

	
	3
	7
	6

	+
	
	
	

	
	0
	0
	0

Construct the 16's complement of the decimal number 5C9.

	
	5
	C
	9

	+
	
	
	

	
	0
	0
	0

Part 7. Interpretation

Interpret the following eight-bit binary string

	1
	0
	1
	1
	1
	1
	0
	0

	A. As an unsigned integer
	

	B. As an signed integer
	

	C. Convert it to hex
	

The calculator found under Start/Programs/Accessories/Calculator allows one to work in binary-number mode by clicking on the Bin radio button. (You have to be in the Scientific view.) How many bits does it use to represent its binary numbers?

	

What’s the largest number it can represent (assume it’s an unsigned integer).

	

Part 8. Fractions

Express the following fractions in binary form

	Decimal
	Binary

	83.125
	

	71.625
	

Part 9. IP Stuff

Go to Start/Run, type cmd (or command) and click OK. At the prompt, type ipconfig /all. That should provide information about the computer’s network set-up. Convert the IP address and subnet mask to binary. You should include all leading zeros.

	
	Dotted-Decimal Notation
	Binary Representation

	IP Address
	
	

	Subnet mask
	
	

Part 10. ASCII and HTML

The following HTML code if entered into Notepad and saved as ASCII_HTML.htm and viewed in a browser displays the numbers 65 and 66 and the corresponding symbols A and B (65 is ASCII for an A).

<html>

<body>

65 A

66 B

</body>

</html>

Use the character map (Start./Programs/Accessories/System Tools/Character Map or go to Start/Run and enter charmap and click OK) to adapt this code to print § (the Section sign) and ° (the degree sign). Paste your code into this Word document. Also perform a screen capture of the browser and paste it into this Word document.

