	PHYSICS 201
LAB 5
	Sept. 28, 2006

Name: _____________________________

Part 1. Half adders.

When adding two numbers, the standard approach is to start with the digits in the lowest positional order (for integers this is the 1's place) and add them. This may produce a "carry" which affects the sum to be performed at the next positional order. Hence there will be three digits to add at higher order. But when you have three things to add, you can always add them two at a time. Produce the truth table for adding two binary digits.

	A
	B
	CO
	(

	0
	0
	
	

	0
	1
	
	

	1
	0
	
	

	1
	1
	
	

The (above stands for the sum, while the CO stands for the carry-out (the one or zero that is sent on to the next higher order). Using Electronics Workbench build a circuit from logic gates (ANDs, Ors, XORs, etc.) that has such a truth table. Paste a copy of it below.

Such a circuit is called a "half adder." There is a half adder in Electronics Workbench (under the Misc. Digital button). It is shown below.

[image: image1.emf]U2

HALF_ADDER

A

B CARRY

SUM

Part 2. Full adders.

Recall there may have been a carry-in, so the sum of inputs A and B has to be added to the carry-in. This can be accomplished with a second half adder. What should we do with the carry-outs of these two individual half adders in order to obtain one carry-out corresponding to adding all three digits?

	

Using two half adders and logical gates, build a "full adder" (a circuit that can add A and B and the carry-in Ci). Paste a copy of it below.

There is a full adder in Electronics Workbench (under the Digital button). It is shown below.

[image: image2.emf]U1

FULL_ADDER

A

CIN

B CARRY

SUM

Part 3. Four-bit ripple adder.

Build a circuit that uses four full adders to add two four-bit numbers ("words"). Label the inputs appropriately (use A0 for the least significant bit of the A word, etc.). Connect the input to switches. And feed the two 4-bit inputs as well as the 4-bit output into a seven-segment display (I used a DCD_HEX found under Indicator.
[image: image3.emf]U6

DCD_HEX

Part of my circuit is shown below displaying 5+1=6. Paste a copy of your full circuit below showing that 3+5=8.

[image: image4.emf]U5

DCD_HEX

U6

DCD_HEX

U7

DCD_HEX

If we assume that the numbers being added are unsigned integers, then construct an output that will serve as an overflow flag (high if overflow has occurred, low otherwise).
Part 4. Subtraction.

One can construct the logic of subtraction from scratch, but A-B is just the A+(-B), and -B is obtained by taking the 2's complement of B. We do not want to build all new circuitry for subtracting two numbers; instead we want to add to the circuitry we already have. First of all there will have to be an extra input, which tells us whether we mean to add or subtract the inputs A and B (0 for add and 1 for subtract). If this input is a 1, we should take the 2's complement of B.

Hint 1. What is 0(B? (Recall (stands for an excluded OR.)

	0
	B
	0(B

	0
	0
	

	0
	1
	

	

What is 1(B?

	1
	B
	1(B

	1
	0
	

	1
	1
	

	

Hint 2. Recall that second step in the two’s complement procedure is adding a one to the lowest bit. The carry-in for the least significant bit is useful here.

Use full adders and logic gates to build a 4-bit adder/subtractor. Paste a copy of it in this document. Have it showing that 6 – 2 = 4. (See hints below.)
Part 5. Signed Overflow.

Find the scenarios in which the adder/subtractor may experience overflow. These are signed integers, so overflow occurs when one adds two positive numbers and gets a negative number or when one adds two negative numbers and gets a positive number. (It is not simply the most significant carry out.) Add some circuitry that will serve as an overflow flag, i.e. an output that is 1 if overflow has occurred and 0 otherwise. Paste a copy below.

Part 6. Moving away from the ripple adder

The problem with the ripple adder is that it does not scale. If we were to increase word size, we run the risk of introducing timing problems. Because addition (no matter how many bits) is a problem in combinatorial logic, it can written in terms of a truth table and the usual methods of simplification can be applied. Below is the truth table for the carry output of a 2-bit addition, where A0 is the least significant bit of the first operand, A1 is the most significant bit of the first operand, B0 is the least significant bit of the second operand, and B1 is the most significant bit of the second operand. Rewrite the truth table in the Karnaugh map approach and then write a simplified expression for the carry output.

	A1
	A0
	B1
	B0
	Carry out 1

	0
	0
	0
	0
	0

	0
	0
	0
	1
	0

	0
	0
	1
	0
	0

	0
	0
	1
	1
	0

	0
	1
	0
	0
	0

	0
	1
	0
	1
	0

	0
	1
	1
	0
	0

	0
	1
	1
	1
	1

	1
	0
	0
	0
	0

	1
	0
	0
	1
	0

	1
	0
	1
	0
	1

	1
	0
	1
	1
	1

	1
	1
	0
	0
	0

	1
	1
	0
	1
	1

	1
	1
	1
	0
	1

	1
	1
	1
	1
	1

	
	B0
	0
	1
	1
	0

	A1
	A0\B1
	0
	0
	1
	1

	0
	0
	
	
	
	

	0
	1
	
	
	
	

	1
	1
	
	
	
	

	1
	0
	
	
	
	

	Carry out:

Part 7. Digital to Analog.

Build a simple digital-to-analog converter discussed in lecture. Build a circuit that converts a digital signal (three inputs of +5 volts or 0 volts) to an analog signal (the appropriate fraction of 5 volts). Paste two copies of your circuit below showing different inputs and the appropriate outputs. You must label your inputs so that it is clear which input is the least significant digit, etc.

	Most

significant
	
	Least Significant
	Output Voltage

	0
	0
	0
	

	0
	0
	1
	

	0
	1
	0
	

	0
	1
	1
	

	1
	0
	0
	

	1
	0
	1
	

	1
	1
	0
	

	1
	1
	1
	

4 of 4

