PHYSICS 201
LAB 1

Part 1. Binary and hexadecimal numbers.

All of the information stored in and processed by a computer is represented in bits (binary digits, 1's and 0's). Why?

Convert the following decimal numbers into binary and hexadecimal.

	Decimal
	Binary
	Hex

	45
	
	

	454
	
	

	4545
	
	

Convert the following binary numbers into decimal. (Assume they are unsigned.)
	Binary
	Decimal
	Hex

	11010011
	
	

	10110010
	
	

	10100101
	
	

Part 2. Overflow.

Let us assume for now that the numbers we are representing are unsigned integers (i.e. non-negative integers). If we use N bits, what is the largest unsigned integer we can represent (assuming the lowest is 0)?

	

If we add two integers whose sum exceeds our largest integer, we say we have an "overflow."

The following C++ program prints out the powers of 2, and would naively go on forever. The variable is declared as unsigned (positives only).

// not an infinite loop

// use to demonstrate overflow

unsigned num;

num=1;

while(num>=1)

{

num=2*num;

Console::WriteLine(num);

}

return 0;
Use the instructions on the PowerPoint presentation VS0025_C to run the above program. Copy the results below.

	Output from code:

Why is not an infinite loop? Note the program does not end on an error (which overflow would be) so look at the condition for the loop and ask yourself how it could be false.

	

What is the largest unsigned integer allowed by the compiler used? Be careful, the program displays the largest power of two, which is not the largest number.

	

How many bits does it use to represent an unsigned integer?

	

Part 3. Negative Numbers.

Let us extend our representation to include negative numbers. Note that -23 is that number which when added to +23 gives zero. Assuming we are using eight bits to represent a number calculate the two’s complement of 23. First replaces 1’s with 0’s and vice versa.

	0
	0
	0
	1
	0
	1
	1
	1

	
	
	
	
	
	
	
	

Copy the result above into the top row below and then add 1 to your result.

	
	
	
	
	
	
	
	
	

	+
	0
	0
	0
	0
	0
	0
	0
	1

	
	
	
	
	
	
	
	
	

Copy the result above into the second row below and add to demonstrate that 23 + (-23) = 0.
	
	0
	0
	0
	1
	0
	1
	1
	1

	+
	
	
	
	
	
	
	
	

	
	0
	0
	0
	0
	0
	0
	0
	0

Repeat the steps above to find –108. (0’s (1’s)

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

And add 1.

	
	
	
	
	
	
	
	
	

	+
	0
	0
	0
	0
	0
	0
	0
	1

	
	
	
	
	
	
	
	
	

Next, add 23 and –108.

	
	
	
	
	
	
	
	
	

	+
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Does the answer above make sense? How do you know?

	

Part 4. More on Negative Numbers

If we use 16 bits, what is the largest integer (signed) we can represent?

	

What is its binary representation?

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

What is the smallest (most negative) integer?

	

What is its binary representation?

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

The following program is like that considered earlier but with the variable declared as an integer (positive or negative).

// not an infinite loop -- use to demonstrate overflow

int num;

num=1;

while(num>=1)

{

num=2*num;

Console::WriteLine(num);

}
return 0;

	Output from code:

Why is it not an infinite loop? And where did that negative number at the end come from?

	

What is the largest integer allowed by this compiler?

	

How many bits does it use to represent integer?

	

Part 5. Negative Numbers in Other Bases

Construct the 10's complement of the decimal number 467. What number (other than -458) will produce the zeros shown below when added to 467?
	
	4
	6
	7

	+
	
	
	

	
	0
	0
	0

Construct the 16's complement of the hexadecimal number 5E9.

	
	5
	E
	9

	+
	
	
	

	
	0
	0
	0

Part 6. Interpretation

Interpret the following eight-bit binary string

	1
	1
	0
	1
	0
	1
	1
	0

	A. As an unsigned integer
	

	B. As an signed integer
	

	C. Convert it to hex
	

The calculator found under Start/Programs/Accessories/Calculator allows one to work in binary-number mode by clicking on the Bin radio button. (You have to be in the Scientific View.) How many bits does it use to represent its binary numbers?

	

What’s the largest number it can represent (assume it’s an unsigned integer).

	

Part 7. Fractions (Fixed point binary numbers)
Express the following fractions in binary form. Use eight bits for the whole number and eight bits for the fraction.
	Decimal
	Binary

	103.3125
	

	83.625
	

Part 8. IP Stuff

Go to Start/Run, type cmd (or command) and click OK. At the prompt, type ipconfig /all. That should provide information about the computer’s network set-up. Convert the IP address and subnet mask to binary. You should include all leading zeros.

	
	Dotted-Decimal Notation
	Binary Representation

	IP Address
	
	

	Subnet mask
	
	

Part 9. ASCII and HTML

The following HTML code if entered into Notepad and saved as ASCII_HTML.htm and viewed in a browser displays the numbers 65 and 66 and the corresponding symbols A and B (65 is ASCII for an A).

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>ASCII CODES</title>

</head>

<body bgcolor="#99cccc" >

<div style="text-align: center">

<table border="1" cellpadding="5" cellspacing="5" >

<tr><td>ASCII Code </td><td>Symbol</td></tr>

<tr><td>65 </td><td>A </td></tr>

<tr><td>66 </td><td>B </td></tr>

</table>

</div>

</body>

</html>
Use the character map (Start/All Programs/Accessories/Character Map or go to Start/Run and enter charmap and click OK) to adapt this code to print ® (the registered sign) and ¥ (the Yen sign). Paste your code into this Word document. Also perform a screen capture of the browser and paste it into this Word document.

Note that in the code above the body tag’s bgcolor attribute is set to the hexadecimal value 99cccc. Fill in the following table.

	Color Hex code
	Decimal value
	Color Description

	99CCCC
	10079436
	Light blue

	FF0000
	
	

	00FF00
	
	

	0000FF
	
	

	000000
	
	

	FFFFFF
	
	

	FFFF00
	
	

	FF00FF
	
	

	00FFFF
	
	

	666666
	
	

	CCCCCC
	
	

How many such “web safe” color codes are there?

	

