

Classroom Chaos 8 Dr. Richard A. DiDio La Salle University

0. Circle Maps

A general circle map is defined by

$$\theta_{t+1} = F(\theta_t) \mod 1$$

In this map, θ can be considered to be the position along a circle of circumference = 1.

Question 1: If the function $F(\theta)$ is linear, does the map generate cyclic orbits for any starting value of θ in [0,1]?

Test this assertion by assuming $F(\theta) = \theta + \Omega$, where Ω is a constant in [0,1], and creating a spreadsheet that calculates the sequence generated by the map. Use a designated cell at the top of your sheet for changing the value of Ω . For different values of Ω , determine how many iterations are required to return to the starting point, and how many rotations around the circle the point makes. Define the *winding number*, W, as

$$W = \frac{\text{\# of times around circle}}{\text{\# of iterations}}$$

How is W related to Ω ? Will all values of Ω and W generate cyclic orbits?

Question #2: Use a straight-edge to create a stair-step diagram for the map

$$\theta_{t+1} = \theta_t + 0.4 \mod 1$$

How does your stair-step diagram coincide with your value of winding number for this map?

Question #3: What does your stair-step diagram look like for the map

$$\theta_{t+1} = \theta_t + (\sqrt{2} - 1.014) \mod 1$$
?

Question #4: If the mod 1 were removed from your map in Question #3, show that defining the Winding # as

$$W = \lim_{t \to \infty} \frac{\theta_t - \theta_0}{t}$$

yields the same values for W that you obtained in Question 1, and provides a reasonable way of defining W for maps that do not generate cyclic orbits.

1. Chicken Hearts

The chicken heart data of Glass, Goldberger, Courtemanche, and Shrier can be simulated using the non-linear circle map

$$\theta_{t+1} = \theta_t + \Omega - \left(\frac{K}{2\pi}\right) \sin(2\pi\theta_t) \mod 1$$

where $0 \le K \le 1$, and K measures the non-linearity of the map.

The Devils' Staircase: Setting K=1, create a spreadsheet that implements this map (sans the mod 1 piece) for 100 values of Ω , where the start and end values of Ω can be changed easily. (You will need 100 columns for this sheet. Let your map iterate 250 times for each value of Ω .) For each value of Ω , numerically calculate the approximate winding # W.

Plot W vs. Ω on an *x*-*y* scatter graph, where $0 \le \Omega \le 1$. Describe the significance of the W values corresponding to the steps that you see.

Zoom in on different parts of your staircase by changing the starting and ending values of Ω . How many steps are in your staircase for $0 \le \Omega \le 1$?

<u>Stair-steps from the Devils' Staircase</u> Create a stair-step diagram for your map (with the mod 1 piece, of course) for a value of Ω that yields a winding # plateau. Does your diagram produce the expected result?