Chapter 10
Nature’s Own Software

When Stephen Wolfram came to the Institute at the advanced age of twenty-three, he was put into a first-floor corner office in the astro​physicists’ building. Wolfram didn’t really belong there, though, because he wasn’t an astrophysicist. But he didn’t belong with the particle physi​cists, either, because he also wasn’t a particle physicist. Stephen Wolfram was in a new category altogether, one for which there was as yet no name.

Later, when the Institute gave him a whole suite of offices, to accommodate himself, his staff, and their combined computer gear, there was still no name for the type of physics they were doing, although for a while they thought of themselves as the dynamical systems group. The reason there was no name for what they were doing is that the field didn’t exist yet: no one had ever done it before.

Most scientists restrict themselves to one narrow subject matter—to globular clusters, for example, or solar neutrinos, or fruit flies—but Wolf​ram had a far grander goal in view. He wanted to explain not the complex​ity of any given phenomenon, but complexity itself, wherever it might be found, whether in the structure of galaxies, or in turbulent fluids, or in the nucleotide sequences of a DNA molecule. He wanted to understand complexity, what’s more, not in terms of the usual vehicle of mainstream physics, which is to say the differential equation, but in terms of something that was essentially new in science, the abstract, pattern-generating mech​anisms known as cellular automata.

Cellular automata are not real things, they’re only abstractions, creatures of the intellect. But they’re big with Wolfram and his cohorts because it turns out that, when these imaginary mechanisms are simulated by a computer, they replicate the operations of physical systems that are actually found in nature. This is a bit uncanny. It’s as if someone wrote a novel—an utter fiction—and then discovered that everything in the novel had actually happened.

There was the time Wolfram produced the seashell pattern, for example. He was working with a simple cellular automaton—the computer program for it was utterly innocuous, just a few lines long—and this dia-
interes
mond-shaped pattern shows up on the screen. It reminded him of some
special mollusk shells that he had once seen in a marine biology catalog. So he
He went back and paged through the catalog, and sure enough, there it was.
He put the picture from the catalog next to the picture on the computer screen, and there was just no doubting it: his cellular automata simulation, the little self-repeating formula that he’d typed into the computer, it had produced exactly the pigmentation patterns found on the seashell. Hard to believe, but the proof was right there in front of him:

Later he discovered that cellular automata not only produced the patterns found on seashells, they also simulated the stru’cture of snowflakes, the growth of crystals, the meandering of rivers, and any one of a dozen other things. It was incredible. In went a few lines of computer code, out came the real world, as if by magic. Cellular automata, Wolfram decided, might be able to explain the very architecture of nature.

Could it be, he wondered, that nature itself is in some sense a gigantic cellular automaton? Could it be, in other words, that the universe as a whole is a vast. . . natural computer?

Stephen Wolfram was born in 1959, in London, to a mother who was an Oxford philosophy professor and a father who was part-time import/export businessman and part-time novelist. Wolfram wasn’t much interested in any of that, but it was clear right away that he had some n of some special talents of his own and an unusual view of his place in the world. So he He went to Eton, where he played cricket - or at least he showed up on the cricket field. “1 learned the best positions on the field so that I could read a book during the match,” Wolfram says in his British accent. “I had to play cricket. I wouldn’t have played it by choice.” Later, at seventeen, he attended Oxford University - or at least he showed up on the campus. “1 had the good fortune never to have to go to courses or anything like that, because I learned what I needed to know from books. From everything I’ve seen, courses are just a waste of time and one can learn most things a lot more quickly just by reading about them.”

This isn’t just idle boasting, because by the time he was fifteen, two years before enrolling at Oxford, Wolfram had written—and published—his first scientific paper, about a problem in particle physics. He never liked the article very much, though. “It wasn’t very interesting,” Wolfram says. “It’s really lousy. I don’t even have a copy of it anymore.”

He has a copy of his second paper, though, which he wrote “much later,” as he puts it, “when I was sixteen.” He’s saved a copy of this one, and he can even find it when challenged: “Neutral Weak Interactions in Particle Decays,” published in Nuclear Physics in 1976.

In 1978, Wolfram came to the United States, to Caltech, where he was invited by physicist Murray Cell-Mann. He got his Ph.D. degree in theoretical physics a year later, when he had just turned twenty. “I actually missed out on being a teenage Ph.D.,” he says, a little regretfully. Not long afterward, Wolfram received one of those MacArthur Foundation “genius” grants, the youngest person ever to be awarded one. You don’t apply for these grants: the procedure is that you just get a phone call out of the blue any one one day to learn that you’ve won a tidy, tax-free sum every year for the next five years, and that with this money you can do whatever you want. Wolfram got $125,000; he chose to continue on with his research.

At the time, Wolfram’s interests were divided between particle physics and cosmology. He was particularly interested in the evolution of the early universe, and he decided to work on the problem of galaxy formation. In order to do some calculations he found that it would be helpful to have a computer language that could handle algebraic expressions - abstract formulas - instead of just numbers. There was no computer in existence that was really good at this, and so he decided to invent one of his own. Together with a few collaborators at Caltech - Chris Cole, Tim Shaw, and others - Wolfram created a language that would do algebra. “Instead of just telling one that 2 + 3 is 5, for example, the program could tell one that (x -i- 1)2 when expanded out is (x2 + 2x + 1). In other words, it could deal with symbols as well as with numbers.” Wolfram named the language SMP, for Symbolic Manipulation Program.

It turned out that a symbol-juggling computer language had wide applications not only in theoretical physics but also in engineering and other branches of applied science. Wolfram saw no reason not to market the product commercially, and so he licensed SMP sales rights to a software firm called the Inference Corporation, of Los Angeles. This displeased Cal-tech, however, which claimed that it owned the language, since it had been developed on its premises and by its employees. Caltech and Wolfram settled their differences out of court, but Wolfram ended up quitting anyway in order to join the Institute for Advanced Study. At the Institute, they had a reputation for leaving you alone, something that was powerfully appealing to Stephen Wolfram.

It was during his dispute with Caltech that Wolfram first became interested in cellular automata theory. He was finding that, in order to derive the structure of galaxies from the fireball of the Big Bang, you needed some sort of pattern-generating mechanism. Cellular automata, it turns out, excel at the task of generating patterns.

“If you think about the thermodynamics of the early universe,” Wolfram says, “you get into a strange problem. The universe is supposed to have started out as this uniform ball of hot gas, but in the end what we see is a lot of galaxies that are very patchy and irregular. The question is how do you get one from the other? Standard statistical mechanics says that you can’t, and so I got interested in systems where you could start off with something which is completely random and completely uniform and end up with something which is kind of patchy and not uniform, and which might have some complicated structure to it.”

At its most fundamental level, the problem involved goes back to the birth of philosophy, back at least to Plato. The question is how to get order out of disorder, complexity from simplicity. How from the chaos of the Big Bang do we wind up with structures as intricate as the chambered nautilus, the human eye or inner ear, the foundation of life itself in the bafflingly complex structures of DNA? It’s the same problem that underlies the debate between science and creationism: You can’t get something out of nothing, you can’t get fantastically complex orderliness out of utter and irreducible chaos. To get what you actually find in the world, say the creationists, you have to suppose that God himself created it.

Wolfram, being a scientist, was intent on explaining order without reference to divine miracles. But if God didn’t impose the order we find in nature, and if that order wasn’t always there to begin with, then it follows that the universe must be somehow self-organizing. It must have created its own order. But how? What was the mechanism behind it?

Simultaneously with this, Wolfram was working on the different question of how to get minds from machines. “From the other side I got interested in problems about artificial intelligence, Wolfram says. “I realized that if you want to make things really work in artificial intelligence it’s no good just to have a computer with a single central processing unit, you have to have a computer that can process lots of information in parallel, and so I got sort of interested in what were the simplest parallel processing computers. So I was doing these two things -on the one hand trying to make a simple model for self-organizing systems, and on the other hand trying to understand simple models for parallel computers.”

The one thing that both these problems had in common was that they required a way of getting complexity from simplicity: complex galactic structure from an original uniformity, and complex computing abilities from elementary components. So Wolfram took it upon himself to figure out how you could systematically generate complexity from simplicity.

He knew from the general concept of recursiveness in mathematics—the procedure of defining something in terms of simpler versions of itself - that complicated structures could arise from simple beginnings through the repeated iteration of one or more rules, as happens, for example, in the game called “Life.”

Life was invented in 1970 by Cambridge University mathematician John Conway. The game is played out on a vast cellular space, a two-dimensional plane divided up into “cells,” such as those on graph paper or on a checkerboard. Each cell has eight neighbors, four at right angles, and four more at the corners. Cells can be either on (“alive”) or off (“dead”). If a cell is on, it’s filled in with a marker of some type; if it’s off, it’s left blank.

The general principle behind the game is that life or death is a function of one’s neighbors: isolated cells die of loneliness, while cells that are too crowded die of overpopulation. When neither of these extremes obtains, then live cells will remain alive, and when conditions are just exactly right then a live birth will occur. Just like in real life.

It all boils down to just two rules:

1.
A live cell will remain alive in the next generation if it has either

two or three live neighbors (the happy medium); otherwise it will

die (from isolation or overcrowding).

2.
A dead cell comes alive—a birth occurs—when it has exactly

three live neighbors.

Those are all the rules.

Say, for example, that you start off with just two live cells, one right

next to the other:

Go

Now this is a sudden-death situation, because these poor fellows are too lonely to go on living. In the next generation both those cells will be off, and their squares will be blank.

But if you had begun with four live cells in a square array,

00

Go

then everyone would be satisfied with life and they’d continue to live in the next generation, the reason being that having three live neighbors is the happy medium.

And if the blessed situation should obtain that a dead cell has

exactly three live neighbors,

GO

0

then a birth would occur:

00

00

234

at life or death is a ness, while cells that ~r of these extremes conditions are just al life.

ration if it has either ~); otherwise it will

~en it has exactly

Now one might think that from rules this simpleminded nothing interesting could possibly occur. But one would be wrong. Some starting patterns are like good genes: they are fruitful, and they multiply, sometimes in surprising ways. Take, for example, the I-shaped pattern called the “T tetromino”:

000

0

In the very next generation (step I below), three births have occurred. In the generation after that, the shape breaks up, as if it were undergoing cell division, and then, births, deaths,.., and ordered patterns emerge:

9

090
000

0
000

live cells, one right

initial T Tetromino

0
000
9

00
09
0
 0
0

1
2
3
4

 9

000
00

00
0 0

000
00

0

5

~oor fellows are too ~se cells will be off,

iuare array,

continue to live in ~e live neighbors is

iat a dead cell has

000

0
0

O
0

~
0

000

7

0

000

000

000 000

000

000

0

8

000

0
0
0
9
0
0

000

9

0

0

0

000 000

0

0

0

10

Turn the T tetromino clockwise 90 degrees, and add a single live cell on the upper righthand corner, and you’ve got an “R pentomino”:

00

00

0

The R pentomino is incredibly prolific. After sixty generations (moves), it has exploded into a microcosmos (see next page).

Life’s evolving patterns— “Life-forms” —are basic examples of cellu​lar automata. They’re cellular insofar as they exist in the squares—or cells— of a checkerboard-like grid. They’re automata in the sense that they develop of their own accord—”automatically”—from repeated applications of the same two rules. In other words, Life-forms are not interactive: they require no human guidance or control for their growth and development. Given an

Nature’s Own Software
235

0

000

00 00

090

0

6

