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Halliday/Resnick/Walker 7e  

Chapter 2 

 

2. Huber’s speed is  

 

v0=(200 m)/(6.509 s)=30.72 m/s = 110.6 km/h, 

 

where we have used the conversion factor 1 m/s = 3.6 km/h. Since Whittingham beat Huber by 

19.0 km/h, his speed is v1=(110.6 + 19.0)=129.6 km/h, or 36 m/s (1 km/h = 0.2778 m/s). Thus, 

the time through a distance of 200 m for Whittingham is 

 

1

200 m
5.554 s.

36 m/s

x
t

v

∆
∆ = = =  

 
3. We use Eq. 2-2 and Eq. 2-3. During a time tc when the velocity remains a positive constant, 

speed is equivalent to velocity, and distance is equivalent to displacement, with ∆x = v tc. 

 

(a) During the first part of the motion, the displacement is ∆x1 = 40 km and the time interval is 

 

t1
40

133= =
(

.
 km)

(30 km / h)
 h.  

 

During the second part the displacement is ∆x2 = 40 km and the time interval is 

 

t2
40

0 67= =
(

.
 km)

(60 km / h)
 h. 

 

Both displacements are in the same direction, so the total displacement is  

 

∆x = ∆x1 + ∆x2 = 40 km + 40 km = 80 km. 

 

The total time for the trip is t = t1 + t2 = 2.00 h. Consequently, the average velocity is 

 

vavg

 km)

(2.0 h)
 km / h.= =

(80
40  

 

(b) In this example, the numerical result for the average speed is the same as the average 

velocity 40 km/h. 

 

(c) As shown below, the graph consists of two contiguous line segments, the first having a 

slope of 30 km/h and connecting the origin to (t1, x1) = (1.33 h, 40 km) and the second having a 

slope of 60 km/h and connecting (t1, x1) to (t, x) = (2.00 h, 80 km). From the graphical point of 

view, the slope of the dashed line drawn from the origin to (t, x) represents the average 

velocity.  
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5. Using x = 3t – 4t
2
 + t

3
 with SI units understood is efficient (and is the approach we will use), 

but if we wished to make the units explicit we would write  

 

x = (3 m/s)t – (4 m/s
2
)t

2
 + (1 m/s

3
)t

3
. 

 

We will quote our answers to one or two significant figures, and not try to follow the 

significant figure rules rigorously. 

 

(a) Plugging in t = 1 s yields x = 3 – 4 + 1 = 0.  

 

(b) With t = 2 s we get x = 3(2) – 4(2)
2
+(2)

3 
= –2 m.  

 

(c) With t = 3 s we have x = 0 m. 

 

(d) Plugging in t = 4 s gives x = 12 m.  

 

For later reference, we also note that the position at t = 0 is x = 0. 

 

(e) The position at t = 0 is subtracted from the position at t = 4 s to find the displacement ∆x = 

12 m. 

 

(f) The position at t = 2 s is subtracted from the position at t = 4 s to give the displacement ∆x = 

14 m. Eq. 2-2, then, leads to 

 

v
x

t
avg  m / s.= = =

∆
∆

14

2
7  

 

(g) The horizontal axis is 0 ≤ t ≤ 4 with SI units understood. 

 

Not shown is a straight line drawn from the point at (t, x) = (2, –2) to the highest point shown 

(at t = 4 s) which would represent the answer for part (f). 
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9. Converting to seconds, the running times are t1 = 147.95 s and t2 = 148.15 s, respectively. If 

the runners were equally fast, then 

 

1 2
avg avg1 2

1 2

     .
L L

s s
t t

= ⇒ =  

 

From this we obtain 

 

2
2 1 1 1 1

1

148.15
1 1  0.00135 1.4 m

147.95

t
L L L L L

t

   − = − = − = ≈   
  

 

 

where we set L1 ≈ 1000 m in the last step. Thus, if L1 and L2 are no different than about 1.4 m, 

then runner 1 is indeed faster than runner 2. However, if L1 is shorter than L2 by more than 1.4 

m, then runner 2 would actually be faster. 

 

12. We use Eq. 2-4. to solve the problem. 

 

(a) The velocity of the particle is 

 

v
dx

dt

d

dt
t t t= = − + = − +  ( ) .4 12 3 12 62  

 

Thus, at t = 1 s, the velocity is v = (–12 + (6)(1)) = –6 m/s. 

 

(b) Since v < 0, it is moving in the negative x direction at t = 1 s. 

 

(c) At t = 1 s, the speed is |v| = 6 m/s. 

 

(d) For 0 < t < 2 s, |v| decreases until it vanishes. For 2 < t < 3 s, |v| increases from zero to the 

value it had in part (c). Then, |v| is larger than that value for t > 3 s. 

 

(e) Yes, since v smoothly changes from negative values (consider the t = 1 result) to positive 

(note that as t → + ∞, we have v → + ∞). One can check that v = 0 when 2 s.t =  

 

(f) No. In fact, from v = –12 + 6t, we know that v > 0 for t > 2 s. 

 

13. We use Eq. 2-2 for average velocity and Eq. 2-4 for instantaneous velocity, and work with 

distances in centimeters and times in seconds. 
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(a) We plug into the given equation for x for t = 2.00 s and t = 3.00 s and obtain x2 = 21.75 cm 

and x3 = 50.25 cm, respectively. The average velocity during the time interval 2.00 ≤ t ≤ 3.00 s 

is 

 

v
x

t
avg 

 cm  cm

 s  s
= =

−
−

∆
∆

50 25 2175

300 2 00

. .

. .
 

 

which yields vavg = 28.5 cm/s. 

 

(b) The instantaneous velocity is v tdx
dt

= = 4 5 2. , which, at time t = 2.00 s, yields v = 

(4.5)(2.00)
2
 = 18.0 cm/s. 

 

(c) At t = 3.00 s, the instantaneous velocity is v = (4.5)(3.00)
2
 = 40.5 cm/s. 

 

(d) At t = 2.50 s, the instantaneous velocity is v = (4.5)(2.50)
2
 = 28.1 cm/s. 

 

(e) Let tm stand for the moment when the particle is midway between x2 and x3 (that is, when 

the particle is at xm = (x2 + x3)/2 = 36 cm). Therefore, 

 

x t tm m m= + ⇒ =9 75 15 2 5963. . .       

 

in seconds. Thus, the instantaneous speed at this time is v = 4.5(2.596)
2
 = 30.3 cm/s. 

 

(f) The answer to part (a) is given by the slope of the straight line between t = 2 and t = 3 in this 

x-vs-t plot. The answers to parts (b), (c), (d) and (e) correspond to the slopes of tangent lines 

(not shown but easily imagined) to the curve at the appropriate points. 

 

 
 

14. We use the functional notation x(t), v(t) and a(t) and find the latter two quantities by 

differentiating: 

 

v t
dx t

t
t a t

dv t

dt
tb g b g b g b g

= = − + = = −15 20 302 and  

 

with SI units understood. These expressions are used in the parts that follow. 

 

(a) From 0 15 202= − +t , we see that the only positive value of t for which the particle is 

(momentarily) stopped is t = =20 15 12/ . s . 
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(b) From 0 = – 30t, we find a(0) = 0 (that is, it vanishes at t = 0). 

 

(c) It is clear that a(t) = – 30t is negative for t > 0  

 

(d) The acceleration a(t) = – 30t is positive for t < 0. 

 

(e) The graphs are shown below. SI units are understood. 

 

 

 
 

15. We represent its initial direction of motion as the +x direction, so that v0 = +18 m/s and v 

= –30 m/s (when t = 2.4 s). Using Eq. 2-7 (or Eq. 2-11, suitably interpreted) we find 

 

aavg

2m / s=
− − +

= −
( ) ( )

.

30 18

2 4
20  

 

which indicates that the average acceleration has magnitude 20 m/s
2
 and is in the opposite 

direction to the particle’s initial velocity. 

 

16. Using the general property d
dx

bx b bxexp( ) exp( )= , we write 

 

v
dx

dt

d t

dt
e t

de

dt

t
t

= = FHG
I
KJ ⋅ + ⋅

F
HG
I
KJ

−
−

( )
( )

19
19 .  

 

If a concern develops about the appearance of an argument of the exponential (–t) apparently 

having units, then an explicit factor of 1/T where T = 1 second can be inserted and carried 

through the computation (which does not change our answer). The result of this differentiation 

is 

 

v t e t= − −16 1( )  

 

with t and v in SI units (s and m/s, respectively). We see that this function is zero when t = 1 s.  
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Now that we know when it stops, we find out where it stops by plugging our result t = 1 into 

the given function x = 16te
–t
 with x in meters. Therefore, we find x = 5.9 m. 

 

 

20. The constant-acceleration condition permits the use of Table 2-1. 

 

(a) Setting v = 0 and x0 = 0 in 2 2

0 02 ( )v v a x x= + − , we find 

 

x
v

a
= − = −

×

− ×

F
HG

I
KJ =

1

2

1

2

500 10

125 10
01000

2 6

14

.

.
. m .  

 

Since the muon is slowing, the initial velocity and the acceleration must have opposite signs. 

 

(b) Below are the time-plots of the position x and velocity v of the muon from the moment it 

enters the field to the time it stops. The computation in part (a) made no reference to t, so that 

other equations from Table 2-1 (such as v v at= +0 and  x v t at= +0
1
2

2) are used in making 

these plots. 

 

 
 

21. We use v = v0 + at, with t = 0 as the instant when the velocity equals +9.6 m/s. 

 

(a) Since we wish to calculate the velocity for a time before t = 0, we set t = –2.5 s. Thus, Eq. 

2-11 gives 

 

v = + − =( . . ( . .9 6 32 2 5 16 m / s)  m / s   s)  m / s.2c h  

 

(b) Now, t = +2.5 s and we find 

 

v = + =( . . ( .9 6 32 2 5 18 m / s)  m / s   s)  m / s.2c h  

 

23. The constant acceleration stated in the problem permits the use of the equations in Table 

2-1. 

 

(a) We solve v = v0 + at for the time: 
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t
v v

a
=

−
=

×
= ×0

1
10

8
63 0 10

9 8
31 10

( .

.
.

 m / s)

 m / s
 s

2
 

 

which is equivalent to 1.2 months. 

 

(b) We evaluate x x v t at= + +0 0
1
2

2
, with x0 = 0. The result is 

 

( )2 6 2 131
9.8 m/s (3.1 10 s) 4.6 10  m .

2
x = × = ×  

 

27. The problem statement (see part (a)) indicates that a = constant, which allows us to use 

Table 2-1. 

 

(a) We take x0 = 0, and solve x = v0t + 1
2
at

2
 (Eq. 2-15) for the acceleration: a = 2(x – v0t)/t

2
. 

Substituting x = 24.0 m, v0 = 56.0 km/h = 15.55 m/s and t = 2.00 s, we find 

 

( ) ( )( )
( )

2

2

2 24.0m 15.55m/s 2.00s
3.56m/s ,

2.00s
a

−
= = −  

 

or 2| | 3.56 m/sa = . The negative sign indicates that the acceleration is opposite to the direction 

of motion of the car. The car is slowing down. 

 

(b) We evaluate v = v0 + at as follows: 

 

v = − =1555 356 2 00 8 43. . . .m / s m / s s m / s2c h b g  

 

which can also be converted to30.3 km/h. 

 

31. (a) From the figure, we see that x0 = –2.0 m. From Table 2-1, we can apply x – x0 = v0t + 
1
2
at

2
 with t = 1.0 s, and then again with t = 2.0 s. This yields two equations for the two 

unknowns, v0 and a. SI units are understood. 

 

0 0 2 0 10
1

2
10

6 0 2 0 2 0
1

2
2 0

0

2

0

2

. . . .

. . . . .

− − = +

− − = +

b g b g b g

b g b g b g

v a

v a

 

 

Solving these simultaneous equations yields the results v0 = 0.0 and a = 4.0 m/s
2
.  

 

(b) The fact that the answer is positive tells us that the acceleration vector points in the +x 

direction. 

 

33. (a) We note that vA = 12/6 = 2 m/s (with two significant figures understood).  Therefore, 

with an initial x value of 20 m, car A will be at x = 28 m when t = 4 s.  This must be the value 

of x for car B at that time; we use Eq. 2-15: 
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28 m = (12 m/s)t + 
1

2
 aB t

2
    where t = 4.0 s . 

 

This yields aB = – 
5

2
 = – 2.5 m/s

2
. 

 

(b) The question is: using the value obtained for aB in part (a), are there other values of t 

(besides t = 4 s) such that xA = xB ?  The requirement is 

 

20 + 2t = 12t + 
1

2
 aB t

2
 

 

where aB = –5/2. There are two distinct roots unless the discriminant 10
2
 − 2(−20)(aB)  is 

zero. In our case, it is zero – which means there is only one root.  The cars are side by side 

only once at t = 4 s.  

  

(c) A sketch is not shown here, but briefly – it would consist of a straight line tangent to a 

parabola at t = 4. 

 

(d) We only care about real roots, which means 10
2
 − 2(−20)(aB) ≥ 0.  If  |aB| > 5/2 then there 

are no (real) solutions to the equation; the cars are never side by side. 

 

(e) Here we have 10
2
 − 2(−20)(aB) > 0  ⇒  two real roots.  The cars are side by side at two 

different times. 

 

34. We assume the train accelerates from rest (v0 0=  and x0 0= ) at a1

2134= + . m / s  until 

the midway point and then decelerates at a2

2134= − . m / s  until it comes to a stop v2 0=b g  
at the next station. The velocity at the midpoint is v1 which occurs at x1 = 806/2 = 403m. 

 

(a) Eq. 2-16 leads to 

 

v v a x v1

2

0

2

1 1 12 2 134 403= + ⇒ = .b gb g 32.9 m/s.=  

 

(b) The time t1 for the accelerating stage is (using Eq. 2-15) 

 

x v t a t t1 0 1 1 1

2

1

1

2

2 403

134
= + ⇒ =

b g
.

 

 

which yields t1 = 24.53 s. Since the time interval for the decelerating stage turns out to be the 

same, we double this result and obtain t = 49.1 s for the travel time between stations. 

 

(c) With a “dead time” of 20 s, we have T = t + 20 = 69.1 s for the total time between start-ups. 

Thus, Eq. 2-2 gives 

 

vavg

m

s
m / s .= =

806

691
117

.
.  

 

(d) The graphs for x, v and a as a function of t are shown below. SI units are understood. The 

third graph, a(t), consists of three horizontal “steps” — one at 1.34 during 0 < t < 24.53 and the 
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next at  –1.34 during 24.53 < t < 49.1 and the last at zero during the “dead time” 49.1 < t < 

69.1).  

 

  
 

 
 

38. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down as the –y 

direction) for the duration of the fall. This is constant acceleration motion, which justifies the 

use of Table 2-1 (with ∆y replacing ∆x). 
 

(a) Noting that ∆y = y – y0 = –30 m, we apply Eq. 2-15 and the quadratic formula (Appendix E) 

to compute t: 

 

∆
∆

y v t gt t
v v g y

g
= − ⇒ =

± −
0

2 0 0

2
1

2

2
     

 

which (with v0 = –12 m/s since it is downward) leads, upon choosing the positive root (so that t 

> 0), to the result: 

 

t =
− + − − −

=
12 12 2 9 8 30

9 8
154

2( ) ( . )( )

.
.  s.  

 

(b) Enough information is now known that any of the equations in Table 2-1 can be used to 

obtain v; however, the one equation that does not use our result from part (a) is Eq. 2-16: 

 

v v g y= − =0

2 2 271∆ .  m / s  

 

where the positive root has been chosen in order to give speed (which is the magnitude of the 

velocity vector). 
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39. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down as the –y 

direction) for the duration of the fall. This is constant acceleration motion, which justifies the 

use of Table 2-1 (with ∆y replacing ∆x). 
 

(a) Starting the clock at the moment the wrench is dropped (v0 = 0), then 2 2

o 2v v g y= − ∆  

leads to 

 

∆y = −
−

= −
( )

( . )
.

24

2 9 8
29 4

2

 m  

 

so that it fell through a height of 29.4 m. 

 

(b) Solving v = v0 – gt for time, we find: 

 

t
v v

g
=

−
=

− −
=0 0 24

9 8
2 45

( )

.
.  s.  

 

(c) SI units are used in the graphs, and the initial position is taken as the coordinate origin. In 

the interest of saving space, we do not show the acceleration graph, which is a horizontal line 

at –9.8 m/s
2
. 

 

 
 

40. Neglect of air resistance justifies setting a = –g = –9.8 m/s
2
 (where down is our –y direction) 

for the duration of the fall. This is constant acceleration motion, and we may use Table 2-1 

(with ∆y replacing ∆x). 
 

(a) Using Eq. 2-16 and taking the negative root (since the final velocity is downward), we have 

 

v v g y= − − = − − − = −0

2 2 0 2 9 8 1700 183∆ ( . )( )  

 

in SI units. Its magnitude is therefore 183 m/s. 

 

(b) No, but it is hard to make a convincing case without more analysis. We estimate the mass 

of a raindrop to be about a gram or less, so that its mass and speed (from part (a)) would be less 

than that of a typical bullet, which is good news. But the fact that one is dealing with many 

raindrops leads us to suspect that this scenario poses an unhealthy situation. If we factor in air 

resistance, the final speed is smaller, of course, and we return to the relatively healthy situation 

with which we are familiar. 
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43. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down as the –y 

direction) for the duration of the motion. We are allowed to use Table 2-1 (with ∆y replacing 

∆x) because this is constant acceleration motion. We are placing the coordinate origin on the 

ground. We note that the initial velocity of the package is the same as the velocity of the 

balloon, v0 = +12 m/s and that its initial coordinate is y0 = +80 m. 

 

(a) We solve y y v t gt= + −0 0
1
2

2  for time, with y = 0, using the quadratic formula (choosing 

the positive root to yield a positive value for t). 

 

t
v v gy

g
=

+ +
=

+ +
=0 0

2

0

2
2 12 12 2 9 8 80

9 8
54

.

.
.

b gb g
s  

 

(b) If we wish to avoid using the result from part (a), we could use Eq. 2-16, but if that is not a 

concern, then a variety of formulas from Table 2-1 can be used. For instance, Eq. 2-11 leads to  

 

v = v0 – gt = 12 – (9.8)(5.4) = – 41 m/s. 

 

Its final speed is 41 m/s. 

 

48. (a) With upward chosen as the +y direction, we use Eq. 2-11 to find the initial velocity of 

the package:  

                

v = vo + at  ⇒  0 = vo – (9.8 m/s
2
)(2.0 s) 

  

which leads to vo = 19.6 m/s. Now we use Eq. 2-15: 

 

∆y = (19.6 m/s)(2.0 s) + 
1

2
 (–9.8 m/s

2
)(2.0 s)

2
 ≈ 20 m . 

 

We note that the “2.0 s” in this second computation refers to the time interval 2 < t < 4 in the 

graph (whereas the “2.0 s” in the first computation referred to the 0 < t < 2 time interval shown 

in the graph). 

  

(b) In our computation for part (b), the time interval (“6.0 s”) refers to the 2 < t < 8 portion of 

the graph: 

 

∆y = (19.6 m/s)(6.0 s) + 
1

2
 (–9.8 m/s

2
)(6.0 s)

2
 ≈ –59 m , 

 

or | | 59 my∆ = . 

 

59. We follow the procedures outlined in Sample Problem 2-8. The key idea here is that the 

speed of the head (and the torso as well) at any given time can be calculated by finding the 

area on the graph of the head’s acceleration versus time, as shown in Eq. 2-26: 

 

1 0

0 1

area between the acceleration curve
  

 and the time axis, from  o 
v v

t t t

 
− =  

 
 

 

(a) From Fig. 2.13a, we see that the head begins to accelerate from rest (v0 = 0) at t0 = 110 ms 
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and reaches a maximum value of 90 m/s
2
 at t1 = 160 ms. The area of this region is 

 ( )3 21
area (160 110) 10 s 90 m/s 2.25 m/s

2

−= − × ⋅ =  

 

which is equal to v1, the speed at t1.  

 

(b) To compute the speed of the torso at t1=160 ms, we divide the area into 4 regions: From 0 

to 40 ms, region A has zero area. From 40 ms to 100 ms, region B has the shape of a triangle 

with area  

 

 2

B

1
area (0.0600 s)(50.0 m/s ) 1.50 m/s

2
= = . 

 

From 100 to 120 ms, region C has the shape of a rectangle with area  

2

Carea   (0.0200 s) (50.0 m/s ) = 1.00 m/s.=  

From 110 to 160 ms, region D has the shape of a trapezoid with area 

  

2

D

1
area   (0.0400 s) (50.0  20.0) m/s  1.40 m/s.

2
= + =  

 

Substituting these values into Eq. 2-26, with v0=0 then gives 

 

 
1 0 0 1 50 m/s + 1.00 m/s + 1.40 m/s = 3.90 m/s,v .− = +  

 

or 
1 3 90 m/s.v .=  

 

60. The key idea here is that the position of an object at any given time can be calculated by 

finding the area on the graph of the object’s velocity versus time, as shown in Eq. 2-25: 

 

1 0

0 1

area between the velocity curve
   

 and the time axis, from  o 
x x .

t t t

 
− =  

 
 

 

(a) To compute the position of the fist at t = 50 ms, we divide the area in Fig. 2-29 into two 

regions. From 0 to 10 ms, region A has the shape of a triangle with area  

 

A

1
area  = (0.010 s) (2 m/s) = 0.01 m.

2
 

      

From 10 to 50 ms, region B has the shape of a trapezoid with area  

 

B

1
area  = (0.040 s) (2 + 4) m/s = 0.12 m.

2
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Substituting these values into Eq. 2-25, with x0=0 then gives 

 

 
1 0 0 0 01 m + 0.12 m = 0.13 m,x .− = +  

or 
1 0 13 m.x .=  

 

(b) The speed of the fist reaches a maximum at t1 = 120 ms. From 50 to 90 ms, region C has 

the shape of a trapezoid with area  

 

C

1
area  = (0.040 s) (4 + 5) m/s = 0.18 m.

2
 

      

From 90 to 120 ms, region D has the shape of a trapezoid with area  

 

D

1
area  = (0.030 s) (5 + 7.5) m/s = 0.19 m.

2
 

 

Substituting these values into Eq. 2-25, with x0=0 then gives 

 

 1 0 0 0 01 m + 0.12 m + 0.18 m + 0.19 m = 0.50 m,x .− = +  

 

or 1 0 50 m.x .=  

 


