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Halliday/Resnick/Walker 7e  
Chapter 4 
 
3. The initial position vector   satisfies ro r r r− =o ∆ , which results in 
 

o
ˆ ˆ ˆ ˆ ˆ ˆ ˆ(3.0 j 4.0k) (2.0i 3.0 j 6.0 k) 2.0 i 6.0 j 10 kr r r= − ∆ = − − − + = − + − ˆ  

 
where the understood unit is meters. 
 
4. We choose a coordinate system with origin at the clock center and +x rightward (towards the 
“3:00” position) and +y upward (towards “12:00”). 
 
(a) In unit-vector notation, we have (in centimeters) r r1 210 10= = .i  and  j− Thus, Eq.  
4-2 gives 

2 1
ˆ ˆ10i 10 j .r r r∆ = − = − −  

 
Thus, the magnitude is given by 2 2| | ( 10) ( 10) 14 cm.r∆ = − + − =  
 
(b) The angle is  

 1 10tan 45  or 135 .
10

θ − −⎛ ⎞= = ° −⎜ ⎟−⎝ ⎠
°

°

 

We choose since the desired angle is in the third quadrant. In terms of the magnitude-
angle notation, one may write  

135−

2 1
ˆ ˆ10i 10 j (14 135 ).r r r∆ = − = − − → ∠ − °

 
(c) In this case, r r r1 210 10 20= − = =j and j,  and  j∆ . cm. Thus, | | 20 cmr∆ =  
 
(d) The angle is given by 

1 20tan 90 .
0

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

(e) In a full-hour sweep, the hand returns to its starting position, and the displacement is zero. 
 
(f) The corresponding angle for a full-hour sweep is also zero.  
 
5. The average velocity is given by Eq. 4-8. The total displacement ∆r  is the sum of three 
displacements, each result of a (constant) velocity during a given time. We use a coordinate 
system with +x East and +y North.  
 
(a) In unit-vector notation, the first displacement is given by 
 

1
km 40.0 min ˆ ˆ = 60.0 i = (40.0 km)i.
h 60 min/h

r ⎛ ⎞ ⎛ ⎞∆ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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The second displacement has a magnitude of 20.0 minkm
h 60 min/h60.0 20.0 km,=⋅  and its direction is 40° 

north of east. Therefore, 
 

2
ˆ ˆ ˆ = 20.0 cos(40.0 ) i + 20.0 sin(40.0 ) j = 15.3 i + 12.9 jr∆ ° ° ˆ  

 
in kilometers. And the third displacement is 
 

3
km 50.0 min ˆ ˆ60.0  i = ( 50.0 km) i.
h 60 min/h

r ⎛ ⎞ ⎛ ⎞∆ = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
The total displacement is 
 

1 2 3
ˆ ˆ ˆ ˆ ˆ+ + 40.0i +15.3i +12.9 j 50.0 i (5.30 km) i +(12.9 km) j.r r r r∆ = ∆ ∆ ∆ = − = ˆ  

 
The time for the trip is (40.0 + 20.0 + 50.0) = 110 min, which is equivalent to 1.83 h. Eq. 4-8 
then yields 
 

avg
5.30 km 12.9 kmˆ ˆ ˆi   j = (2.90 km/h) i + (7.01 km/h) j.
1.83 h 1.83 h

v ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ˆ  

 
The magnitude is  
 
 2 2

avg| | (2.90)  + (7.01)  = 7.59 km/h.v =  
 
(b) The angle is given by  
 

 1 7.01tan 67.5   (north of east),
2.90

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

 
or 22.  east of due north. 5°
 
7. Using Eq. 4-3 and Eq. 4-8, we have 
 

avg

ˆ ˆ ˆ ˆ ˆ ˆ( 2.0i + 8.0j 2.0k) (5.0i 6.0j + 2.0k) ˆ ˆ ˆ( 0.70i +1.40j 0.40k) m/s.
10

v − − − −
= = − −  

 
8. Our coordinate system has  pointed east and  pointed north. All distances are in kilometers, 
times in hours, and speeds in km/h. The first displacement is 

i j
rAB  =  483i  and the second is 

rBC  =  j.− 966  
 
(a) The net displacement is 
 

ˆ ˆ =  +  = (483 km)i  (966 km)jAC AB BCr r r −  
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which yields 2 2 3|  |= (483) +( 966)  =1.08 10  km.ACr − ×  
 
(b) The angle is given by 
 

1 966tan  = 63.4 .
483

− −⎛ ⎞ − °⎜ ⎟
⎝ ⎠

 

 
We observe that the angle can be alternatively expressed as 63.4° south of east, or 26.6° east of 
south. 
 
(c) Dividing the magnitude of  by the total time (2.25 h) gives  rAC

 

 avg

ˆ ˆ483i  966j ˆ ˆ 215i 429j.
2.25

v −
= = −  

 
with a magnitude 2 2

avg| | (215) ( 429) =480 km/h.v = + −  
 
(d) The direction of is 26.6° east of south, same as in part (b). In magnitude-angle notation, 
we would have   

avgv

avg  = (480  63.4 ).v ∠ − °
 
(e) Assuming the AB trip was a straight one, and similarly for the BC trip, then | |rAB  is the 
distance traveled during the AB trip, and | |rBC  is the distance traveled during the BC trip. Since 
the average speed is the total distance divided by the total time, it equals 
 

483
2 25
 +  966  =  644 km / h.
.  

 
9. We apply Eq. 4-10 and Eq. 4-16. 

 

 
(a) Taking the derivative of the position vector with respect to time, we have, in SI units (m/s), 
 
 

2ˆ ˆ ˆ ˆ = (i + 4 j + k) = 8 j + k .dv t t t
dt

ˆ  

 
(b) Taking another derivative with respect to time leads to, in SI units (m/s2), 
 

ˆ ˆ ˆ=  (8 j + k) = 8 j .da t
dt

 

 
10. We adopt a coordinate system with  pointed east and  pointed north; the coordinate origin 
is the flagpole. With SI units understood, we “translate” the given information into unit-vector 
notation as follows: 

i j
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r v

r v
o oi     and     = 10j

j     and     i.

= −

= =

40

40 10
 

 
(a) Using Eq. 4-2, the displacement ∆r  is 
 
  o

ˆ ˆ40 i+40 j.r r r∆ = − = −
 
with a magnitude 2 2| | ( 40) (40) 56.6 m.r∆ = − + =  
 
(b) The direction of ∆r  is  
 

 1 1 40tan tan 45  or 135 .
40

y
x

θ − −∆⎛ ⎞ ⎛ ⎞= = = − °⎜ ⎟ ⎜ ⎟∆ −⎝ ⎠ ⎝ ⎠
°  

 
Since the desired angle is in the second quadrant, we pick 135 (  north of due west). Note 
that the displacement can be written as 

° 45°
( )o 56.6 135r r r∆ = − = ∠ ° in terms of the magnitude-

angle notation. 
 
(c) The magnitude of  is simply the magnitude of the displacement divided by the time (∆t = 
30 s). Thus, the average velocity has magnitude 56.6/30 = 1.89 m/s. 

vavg

 
(d) Eq. 4-8 shows that vavg  points in the same direction as ∆r , i.e, 135 (  north of due west). ° 45°
  
(e) Using Eq. 4-15, we have 
 

a v v
tavg

o i + 0.333j=
−

=
∆

0 333.  

 
in SI units. The magnitude of the average acceleration vector is therefore 0 333 2 0 471. .= m / s2 . 
 
(f) The direction of  is avga
 

1 0.333tan 45  or 135 .
0.333

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

− °  

  
Since the desired angle is now in the first quadrant, we choose 45 , and ° avga  points north of due 
east. 
 
11. In parts (b) and (c), we use Eq. 4-10 and Eq. 4-16. For part (d), we find the direction of the 
velocity computed in part (b), since that represents the asked-for tangent line. 
 
(a) Plugging into the given expression, we obtain 
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2.00
ˆ ˆ ˆ [2.00(8) 5.00(2)]i + [6.00 7.00(16)] j  6.00 i  106 jtr = = − − = − ˆ

ˆ

 

 
in meters. 
 
(b) Taking the derivative of the given expression produces 
 
  2 3ˆ ˆ( ) = (6.00   5.00) i  28.0  jv t t t− −
 
where we have written v(t) to emphasize its dependence on time. This becomes, at  
t = 2.00 s,  ˆ ˆ = (19.0 i  224 j) m/s.v −
 
(c) Differentiating the  found above, with respect to t produces  which 
yields  at t = 2.00 s. 

v t( ) 2ˆ12.0 i 84.0 j,t t−
2ˆ ˆ =(24.0 i 336 j) m/sa −

 
(d) The angle of v , measured from +x, is either 
 

1 224tan 85.2 or 94.8
19.0

− −⎛ ⎞ = − °⎜ ⎟
⎝ ⎠

°  

 
where we settle on the first choice (–85.2°, which is equivalent to 275° measured 
counterclockwise from the +x axis) since the signs of its components imply that it is in the fourth 
quadrant. 
 
14. We make use of Eq. 4-16. 
 
(a) The acceleration as a function of time is 
 

( )( ) ( )2 ˆ ˆ6.0 4.0 i + 8.0 j 6.0 8.0 idv da t t
dt dt

= = − = − ˆt  

 
in SI units. Specifically, we find the acceleration vector at t = 3.0 s to be 

 ( ) 2ˆ ˆ6.0 8.0(3.0) i ( 18 m/s )i.− = −
 
(b) The equation is ; we find t = 0.75 s. a t= −6 0 8 0. .b gi = 0
 
(c) Since the y component of the velocity, vy = 8.0 m/s, is never zero, the velocity cannot vanish. 
 
(d) Since speed is the magnitude of the velocity, we have  
 

| |v v= ( ) ( )2 226.0 4.0 8.0 10t t= − + =  

 
in SI units (m/s). We solve for t as follows: 
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( )
( )

( )( )
( )

22

22

2

2

squaring 6.0 4.0 64   100

rearranging 6.0 4.0   36

taking square root 6.0 4.0    6.0
rearranging 4.0 6.0 6.0   0

6.0 36 4 4.0 6.0
using quadratic formula    

2 8.0

t t

t t

t t
t t

t

− + =

− =

− = ±

− ± =

± − ±
=

 

 
where the requirement of a real positive result leads to the unique answer: t = 2.2 s. 
 
15. Constant acceleration in both directions (x and y) allows us to use Table 2-1 for the motion 
along each direction. This can be handled individually (for ∆x and ∆y) or together with the unit-
vector notation (for ∆r). Where units are not shown, SI units are to be understood. 
 
(a) The velocity of the particle at any time t is given by v v at= +0 , where  is the initial 
velocity and  is the (constant) acceleration. The x component is v

v0

a x = v0x + axt = 3.00 – 1.00t, 
and the y component is vy = v0y + ayt = –0.500t since v0y = 0. When the particle reaches its 
maximum x coordinate at t = tm, we must have vx = 0. Therefore, 3.00 – 1.00tm = 0 or tm = 3.00 s. 
The y component of the velocity at this time is  
 

vy = 0 – 0.500(3.00) = –1.50 m/s; 
 
this is the only nonzero component of v  at tm. 
 
(b) Since it started at the origin, the coordinates of the particle at any time t are given by 
r v t at= +0

1
2

2 .  At t = tm this becomes 
 

( )( ) ( )( )21ˆ ˆ ˆ ˆ3.00i 3.00 1.00 i 0.50 j 3.00 (4.50 i 2.25 j) m.
2

r = + − − = − ˆ  

 
17. (a) From Eq. 4-22 (with θ0 = 0), the time of flight is 
 

2 2(45.0) 3.03 s.
9.80

ht
g

= = =  

 
(b) The horizontal distance traveled is given by Eq. 4-21: 
 

∆x v t= = =0 250 3 03 758( )( . )  m.  
 
(c) And from Eq. 4-23, we find 
 

v gty = = =( . )( . ) .9 80 3 03 29 7 m / s.  
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18. We use Eq. 4-26 
 

( )22 2
0 0

max 0 2
max

9.5m/s
sin 2 9.209 m 9.21m

9.80m/s
v vR
g g

θ
⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

≈  

 
to compare with Powell’s long jump; the difference from Rmax is only ∆R =(9.21 – 8.95) = 0.259 
m. 
 
21. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-
22 are directly applicable. The initial velocity is horizontal so that v y0 0=  and v vx0 0 10= = m s. 
 
(a) With the origin at the initial point (where the dart leaves the thrower’s hand), the y coordinate 
of the dart is given by y g= − 1

2
2t , so that with y = –PQ we have PQ = =1

2
29 8 019 018. . .b gb g m.  

 
(b) From x = v0t we obtain x = (10)(0.19) = 1.9 m. 
 
22. (a) Using the same coordinate system assumed in Eq. 4-22, we solve for y = h: 
 

2
0 0 0

1sin
2

h y v t gtθ= + −  

 
which yields h = 51.8 m for y0 = 0, v0 = 42.0 m/s, θ0 = 60.0° and t = 5.50 s. 
 
(b) The horizontal motion is steady, so vx = v0x = v0 cos θ0, but the vertical component of velocity 
varies according to Eq. 4-23. Thus, the speed at impact is 
 

( ) ( )2 2
0 0 0 0cos sin 27.4 m/s.v v v gtθ θ= + − =  

 
(c) We use Eq. 4-24 with vy = 0 and y = H: 
 

H
v

g
= =0 0

2

2
67 5

sin
.

θb g  m. 

 
25. The initial velocity has no vertical component — only an x component equal to +2.00 m/s. 
Also, y0 = +10.0 m if the water surface is established as y = 0. 
 
(a) x – x0 = vxt readily yields x – x0 = 1.60 m. 
 
(b) Using y y v t gty− = −0 0

1
2

2 , we obtain y = 6.86 m when t = 0.800 s and v0y=0. 
 
(c) Using the fact that y = 0 and y0 = 10.0, the equation y y v t gty− = −0 0

1
2

2  leads to 

2(10.0) / 9.80 1.43 st = = .  During this time, the x-displacement of the diver is x – x0 =  
(2.00 m/s)(1.43 s) = 2.86 m. 
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30. We adopt the positive direction choices used in the textbook so that equations such as Eq. 4-
22 are directly applicable. The coordinate origin is at the release point (the initial position for the 
ball as it begins projectile motion in the sense of §4-5), and we let θ0 be the angle of throw 
(shown in the figure).  Since the horizontal component of the velocity of the ball is vx = v0 cos 
40.0°, the time it takes for the ball to hit the wall is 
 

22.0 1.15 s.
25.0 cos  40.0x

xt
v
∆

= = =
°

 

 
(a) The vertical distance is 
 

2 2
0 0

1 1( sin ) (25.0sin 40.0 )(1.15) (9.80)(1.15) 12.0 m.
2 2

y v t gtθ∆ = − = ° − =  

 
(b) The horizontal component of the velocity when it strikes the wall does not change from its 
initial value: vx = v0 cos 40.0° = 19.2 m/s. 
 
(c) The vertical component becomes (using Eq. 4-23) 
 

0 0sin 25.0 sin 40.0 (9.80)(1.15) 4.80 m/s.yv v gtθ= − = ° − =  
 
(d) Since vy > 0 when the ball hits the wall, it has not reached the highest point yet. 
 
 
34. In this projectile motion problem, we have v0 = vx = constant, and what is plotted is 

2 2.x yv v v= +  We infer from the plot that at t = 2.5 s, the ball reaches its maximum height, where 
vy = 0. Therefore, we infer from the graph that vx = 19 m/s. 
 
(a) During t = 5 s, the horizontal motion is x – x0 = vxt = 95 m. 
 

(b) Since 22
019 31 m/syv+ =  (the first point on the graph), we find 0 24.5 m/s.yv =  Thus, with t 

= 2.5 s, we can use 21
max 0 0 2yy y v t g− = − t or v v g y yy y

2
0

2
00 2= = − −max ,b g  or 

(1
max 0 02 yyy y v v− = + )t  to solve. Here we will use the latter: 

 

y y v v t yy ymax max( ) ( . )( . )− = + ⇒ = + =0 0
1
2

1
2

0 24 5 2 5 31  m 

 
where we have taken y0 = 0 as the ground level. 

 
 
44. The magnitude of the acceleration is 
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a v
r

= = =
2 210

25
4 0

m / s
m

m / s2b g . .  

 
45. (a) Since the wheel completes 5 turns each minute, its period is one-fifth of a minute, or 12 s. 
 
(b) The magnitude of the centripetal acceleration is given by a = v2/R, where R is the radius of 
the wheel, and v is the speed of the passenger. Since the passenger goes a distance 2πR for each 
revolution, his speed is 
 

v = =
2 15

12
7 85

π m
s

m / sb g .  

 
and his centripetal acceleration is 
 

a = =
7 85

15
41

2.
. .

m / s
m

m / s2b g  

 
(c) When the passenger is at the highest point, his centripetal acceleration is downward, toward 
the center of the orbit. 
 
(d) At the lowest point, the centripetal acceleration is , same as part (b). 24.1 m/sa =
 
(e) The direction is up, toward the center of the orbit.   
 
53. To calculate the centripetal acceleration of the stone, we need to know its speed during its 
circular motion (this is also its initial speed when it flies off). We use the kinematic equations of 
projectile motion (discussed in §4-6) to find that speed. Taking the +y direction to be upward and 
placing the origin at the point where the stone leaves its circular orbit, then the coordinates of the 
stone during its motion as a projectile are given by x = v0t and y g= − 1

2
2t (since v0y = 0). It hits 

the ground at x = 10 m and y = –2.0 m. Formally solving the second equation for the time, we 
obtain t y= −2 / g , which we substitute into the first equation: 
 

v x g
y0 2

10 9 8
2 2 0

15 7= − = −
−

=m m / s
m

m / s.
2

b g b g
.

.
.  

 
Therefore, the magnitude of the centripetal acceleration is 
 

a v
r

= = =
2 2

2157
15

160
.
.

.
m / s
m

m / sb g  

 
55. We use Eq. 4-15 first using velocities relative to the truck (subscript t) and then using 
velocities relative to the ground (subscript g). We work with SI units, so 20 , 

, and . We choose east as the  direction. 
 km / h 5.6 m / s→

30 km / h 8.3 m / s→ 45 km / h 12.5  m / s→ + i
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ˆ

 
(a) The velocity of the cheetah (subscript c) at the end of the 2.0 s interval is (from Eq.  
4-44) 
 

c t c g t g
ˆ ˆ12.5 i ( 5.6 i) (18.1 m/s) iv v v= − = − − =  

 
relative to the truck. Since the velocity of the cheetah relative to the truck at the beginning of the 
2.0 s interval is , the (average) acceleration vector relative to the cameraman (in the 
truck) is 

ˆ( 8.3 m/s)i−

 
2

avg

ˆ ˆ18.1 i ( 8.3 i) ˆ(13 m/s ) i,
2.0

a − −
= =  

 
or  2

avg| | 13 m/s .a =
 
(b) The direction of is , or eastward. avga ˆ+i
 
(c) The velocity of the cheetah at the start of the 2.0 s interval is (from Eq. 4-44) 
 

0 c g 0 c t 0 t g
ˆ ˆ( 8.3 i) ( 5.6 i) ( 13.9 m/s) iv v v= + = − + − = − ˆ  

 
relative to the ground. The (average) acceleration vector relative to the crew member (on the 
ground) is 
 

2 2
avg avg

ˆ ˆ12.5 i ( 13.9 i) ˆ(13 m/s ) i,   | | 13 m/s
2.0

a a− −
= = =  

 
identical to the result of part (a). 
 
(d) The direction of  is , or eastward. avga ˆ+i
 
56. We use Eq. 4-44, noting that the upstream corresponds to the direction. ˆ+i
 
(a) The subscript b is for the boat, w is for the water, and g is for the ground. 
 

v v vb  g b w w  g  km / h) i  km / h) i (5 km / h) i= + = + − =( (14 9  
 
Thus, the magnitude is  bg| | 5 km/hv = .
 
(b) The direction of bgv is +x, or upstream. 
 
(c) We use the subscript c for the child, and obtain 
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.

v v vc g c b b g  km / h) i  km / h) i (  km / h) i= + = − + = −( (6 5 1 . 
 
The magnitude is  cg| | 1 km/hv =
 
(d) The direction of is −x, or downstream. cgv
 
59. Relative to the car the velocity of the snowflakes has a vertical component of 8.0 m/s and a 
horizontal component of 50 km/h = 13.9 m/s. The angle θ from the vertical is found from 
 

13.9 m/stan 1.74
8.0 m/s

h

v

v
v

θ = = =  

 
which yields θ = 60°. 
 
60. The destination is D  

→
 = 800 km j^  where we orient axes so that +y points north and +x points 

east.  This takes two hours, so the (constant) velocity of the plane (relative to the ground) is  vpg  
→   

 
= 400 km/h j^ .  This must be the vector sum of the plane’s velocity with respect to the air which 
has (x,y) components (500cos70º, 500sin70º) and the velocity of the air (wind) relative to the 
ground  vag  

→   
 .  Thus, 

 
400 j^  = 500cos70º i^ + 500sin70º j^  +  vag  

→   
    ⇒   vag  

→   
  = –171i^   – 70.0j^ . 

 
(a) The magnitude of  is agv 2 2

ag| | ( 171) ( 70.0) 185 km/h.v = − + − =  
 
(b) The direction of  is agv
 

 1 70.0tan 22.3   (south of west).
171

θ − −⎛ ⎞= = °⎜ ⎟−⎝ ⎠
 

 
69. Since , and v22

0 2y yv v g y= − ∆ y=0 at the target, we obtain 
 

( )( )0 2 9.80 5.00 9.90 m/syv = =  
 
(a) Since v0 sin θ0 = v0y, with v0 = 12.0 m/s, we find θ0 = 55.6°. 
 
(b) Now, vy = v0y – gt gives t = 9.90/9.80 = 1.01 s. Thus, ∆x = (v0 cos θ0)t = 6.85 m. 
 
(c) The velocity at the target has only the vx component, which is equal to v0x = v0 cos θ0 = 6.78 
m/s. 
 
71. The (x,y) coordinates (in meters) of the points are A = (15, −15), B = (30, −45), C = (20, −15), 
and D = (45, 45). The respective times are tA  = 0, tB  = 300 s, tC  = 600 s, and tD  = 900 s.  
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Average velocity is defined by Eq. 4-8.  Each displacement ∆r   
→

 is understood to originate at 
point A. 
 
(a) The average velocity having the least magnitude (5.0/600) is for the displacement ending at 
point C: |  | 0.0083 m/s.avgv =
 
(b) The direction of  is 0°(measured counterclockwise from the +x axis). avgv
 
(c) The average velocity having the greatest magnitude ( 152 + 302 

300  ) is for the displacement 
ending at point B: |   | 0.11 m/s.avgv =
 
(d) The direction of  is 297° (counterclockwise from +x) or −63°  (which is equivalent to 
measuring 63° clockwise from the +x axis). 

avgv

 
88. Eq. 4-34 describes an inverse proportionality between r and a, so that a large acceleration 
results from a small radius. Thus, an upper limit for a corresponds to a lower limit for r. 
 
(a) The minimum turning radius of the train is given by 
 

r v
amin

max . .
.= = = ×

2 2
3216

0 050 9 8
7 3 10

km / h
m / s

m.
2

b g
b gc h  

 
(b) The speed of the train must be reduced to no more than 
 

v a r= = × =max . . .0 050 9 8 100 10 223b gc h m / s 

 
which is roughly 80 km/h. 
 
103. The initial velocity has magnitude v0 and because it is horizontal, it is equal to vx the 
horizontal component of velocity at impact. Thus, the speed at impact is 
 
 2 2

0 03yv v v+ =  
 
where 2yv = gh  and we have used Eq. 2-16 with ∆x replaced with h = 20 m. Squaring both 
sides of the first equality and substituting from the second, we find 
 

v gh v0
2

0
22 3+ = b g  

 
which leads to  and therefore to 2

04gh v= v0 9 8 20 2 7 0= =( . )( ) / . m / s.  
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