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Halliday/Resnick/Walker 7e 
Chapter 5 
 
1. We are only concerned with horizontal forces in this problem (gravity plays no direct role). 
We take East as the +x direction and North as +y. This calculation is efficiently implemented on 
a vector-capable calculator, using magnitude-angle notation (with SI units understood). 
 

a F
m

= =
∠ ° + ∠ °

= ∠
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Therefore, the acceleration has a magnitude of 2.9 m/s2. 
 
4. The net force applied on the chopping block is F F F Fnet = + +1 2 3

ˆ

, where the vector addition 
is done using unit-vector notation. The acceleration of the block is given by 

 a F F F m= + +1 2 3d i / .
 
(a) The forces (in newtons) exerted by the three astronauts can be expressed in unit-vector 
notation as follows: 
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The resultant acceleration of the asteroid of mass m = 120 kg is therefore 
 

( ) ( ) ( ) 2 2
ˆ ˆ ˆ ˆ ˆ27.7 i 16 j 55i 20.5i 35.5j

ˆ ˆ(0.86m/s )i (0.16m/s )j .
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a
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(b) The magnitude of the acceleration vector is 
 

a a ax y= + = + − =2 2 2 2 20 86 016 0 88. . .b g m / s .  
 
(c) The vector  makes an angle θ with the +x axis, where a
 

θ =
F
HG
I
KJ =

−F
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KJ = − °− −tan tan .
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5. We denote the two forces F1 and F2

1−
. According to Newton’s second law, 

 F F ma F ma F1 2 2+ == so, .
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(a) In unit vector notation F1 20 0= . N ib g  and 
 

( ) ( ) ( ) ( )2 2 2ˆ ˆˆ12.0 sin 30.0 m/s i 12.0 cos 30.0 m/s 6.00 m/s i 10.4m/s j.ja = − ° − ° = − − 2 ˆ  
 
Therefore, 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 2
2

ˆ ˆ2.00kg 6.00 m/s i 2.00 kg 10.4 m/s j 20.0 N i
ˆ ˆ32.0 N i 20.8 N j.

F = − + − −

= − −

ˆ
 

 
(b) The magnitude of  is F2

 
 2 2 2 2

2 2 2| | ( 32.0) ( 20.8) 38.2 N.x yF F F= + = − + − =  
 
(c) The angle that  makes with the positive x axis is found from  F2

 
tan θ = (F2y/F2x) = [(–20.8)/(–32.0)] = 0.656. 

 
Consequently, the angle is either 33.0° or 33.0° + 180° = 213°. Since both the x and y 
components are negative, the correct result is 213°. An alternative answer is 

. 213 360 147°− ° = − °
 
9. (a) – (c) In all three cases the scale is not accelerating, which means that the two cords exert 
forces of equal magnitude on it. The scale reads the magnitude of either of these forces. In each 
case the tension force of the cord attached to the salami must be the same in magnitude as the 
weight of the salami because the salami is not accelerating. Thus the scale reading is mg, where 
m is the mass of the salami. Its value is (11.0 kg) (9.8 m/s2) = 108 N. 
 
11. (a) From the fact that T3 = 9.8 N, we conclude the mass of disk D is 1.0 kg.  Both this and 
that of disk C cause the tension T2 = 49 N, which allows us to conclude that disk C has a mass of 
4.0 kg.  The weights of these two disks plus that of disk B determine the tension T1 = 58.8 N, 
which leads to the conclusion that mB = 1.0 kg.  The weights of all the disks must add to the 98 N 
force described in the problem; therefore, disk A has mass 4.0 kg. 
 
(b) mB = 1.0 kg, as found in part (a). 
 
(c) mC = 4.0 kg, as found in part (a). 
 
(d) mD = 1.0 kg, as found in part (a). 
 
12. (a) There are six legs, and the vertical component of the tension force in each leg is sinT θ  
where 40θ = ° . For vertical equilibrium (zero acceleration in the y direction) then Newton’s 
second law leads to 
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6
6

T mg T mgsin
sin

θ
θ

= ⇒ =  

which (expressed as a multiple of the bug’s weight mg) gives roughly 0. / 0.T mg ≈ 26
 
(b) The angle θ is measured from horizontal, so as the insect “straightens out the legs”  θ will 
increase (getting closer to 90 ), which causes sinθ to increase (getting closer to 1) and 
consequently (since sinθ is in the denominator) causes T to decrease. 

°

 
13. We note that the free-body diagram is shown in Fig. 5-18 of the text. 
 
(a) Since the acceleration of the block is zero, the components of the Newton’s second law 
equation yield  

 T – mg sin θ  = 0 
FN – mg cos θ  = 0. 

 
Solving the first equation for the tension in the string, we find 
 

T mg= = ° =sin . . sinθ 8 5 9 8 30 422kg m / s N .b gc h  
 
(b) We solve the second equation in part (a) for the normal force FN: 
 

( )( )2cos 8.5 kg 9.8 m/s cos 30 72 N .NF mg θ= = ° =  
 

(c) When the string is cut, it no longer exerts a force on the block and the block accelerates. The 
x component of the second law becomes –mgsinθ =ma, so the acceleration becomes 
 

2sin 9.8 sin 30 4.9 m/s .a g θ= − = − ° = −  
 
The negative sign indicates the acceleration is down the plane. The magnitude of the acceleration 
is 4.9 m/s2. 
 
14. (a) The reaction force to  west is, by Newton’s third law, . FMW   180 N= FWM   180 N=
 
(b) The direction of  is east. WMF
 
(c) Applying  to the woman gives an acceleration a = 180/45 = 4.0 m/sF m  = a

a

2. 
 
(d) The acceleration of the woman is directed west. 
 
(e) Applying  to the man gives an acceleration a = 180/90 = 2.0 m/sF m  = 2. 
 
(f) The acceleration of the man is directed east. 
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15. (a) The slope of each graph gives the corresponding component of acceleration.  Thus, we 
find ax = 3.00 m/s2 and ay = –5.00 m/s2.  The magnitude of the acceleration vector is therefore 

2 2(3.00) ( 5.00) 5.83 m/sa = + − = 2 , and the force is obtained from this by multiplying with 
the mass (m= 2.00 kg).  The result is F = ma =11.7 N. 
 
(b) The direction of the force is the same as that of the acceleration:  
 

θ = tan–1 (–5.00/3.00) = –59.0°. 
 
17. In terms of magnitudes, Newton’s second law is F = ma, where F = Fnet , | |a a=

r
, and m is 

the (always positive) mass. The magnitude of the acceleration can be found using constant 
acceleration kinematics (Table 2-1). Solving v = v0 + at for the case where it starts from rest, we 
have a = v/t (which we interpret in terms of magnitudes, making specification of coordinate 
directions unnecessary). The velocity is v = (1600 km/h) (1000 m/km)/(3600 s/h) = 444 m/s, so 

F = =500 444
18

12 105kg m s
s

N.b g
.

. ×  

 
19. (a) The acceleration is 
 

a F
m

= = =
20 0 022 N

900 kg
m s2. .  

 
(b) The distance traveled in 1 day (= 86400 s) is 
 

s at= = = ×
1
2

1
2

0 0222 86400 8 3 102 2 7. .m s s m  .2c h b g  

 
(c) The speed it will be traveling is given by 
 

( )( )2 30.0222 m s 86400 s 1.9 10 m s .v at= = = ×  
 
22. The stopping force  and the path of the car are horizontal. Thus, the weight of the car 
contributes only (via Eq. 5-12) to information about its mass (m = W/g = 1327 kg). Our +x axis is 
in the direction of the car’s velocity, so that its acceleration (‘‘deceleration”) is negative-valued 
and the stopping force is in the –x direction: 

F

îF F= −
r

. 
 
(a) We use Eq. 2-16 and SI units (noting that v = 0 and v0 = 40(1000/3600) = 11.1 m/s). 

v v a x a v
x

2
0
2 0

2 2

2
2

111
2 15

= + ⇒ = − = −∆
∆

.
b g  

which yields a = – 4.12 m/s2. Assuming there are no significant horizontal forces other than the 
stopping force, Eq. 5-1 leads to 

F ma F= ⇒ − = −1327 4 12kg m s2b g c h.  
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which results in F = 5.5 × 103 N. 
 
(b) Eq. 2-11 readily yields t = –v0/a = 2.7 s. 
 
(c) Keeping F the same means keeping a the same, in which case (since v = 0) Eq. 2-16 
expresses a direct proportionality between ∆x  and . Therefore, doubling vv0

2
0 means 

quadrupling ∆x . That is, the new over the old stopping distances is a factor of 4.0. 
 
(d) Eq. 2-11 illustrates a direct proportionality between t and v0 so that doubling one means 
doubling the other. That is, the new time of stopping is a factor of 2.0 greater than the one found 
in part (b). 
 
23. The acceleration of the electron is vertical and for all practical purposes the only force acting 
on it is the electric force. The force of gravity is negligible. We take the +x axis to be in the 
direction of the initial velocity and the +y axis to be in the direction of the electrical force, and 
place the origin at the initial position of the electron. Since the force and acceleration are 
constant, we use the equations from Table 2-1: x = v0t and 

y at F
m

t= = FHG
I
KJ

1
2

1
2

2 2 .  

The time taken by the electron to travel a distance x (= 30 mm) horizontally is t = x/v0 and its 
deflection in the direction of the force is 

y F
m

x
v

=
F
HG
I
KJ =

×
×

F
HG

I
KJ

×
×

F
HG

I
KJ = ×

−

−

−
−1

2
1
2

4 5 10
9 11 10
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12 10

15 10
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2 16

31

3

7

2
3.

. .
. m .  

 
24. We resolve this horizontal force into appropriate components. 
 

 
 
(a) Newton’s second law applied to the x axis produces 

F mgcos sin .maθ θ− =  
For a = 0, this yields F = 566 N. 
 
(b) Applying Newton’s second law to the y axis (where there is no acceleration), we have 
 

sin cos 0NF F mgθ θ− − =  
 
which yields the normal force FN = 1.13 × 103 N 
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27. (a) Since friction is negligible the force of the girl is the only horizontal force on the sled. 
The vertical forces (the force of gravity and the normal force of the ice) sum to zero. The 
acceleration of the sled is 
 

a F
ms

s

= = =
5 2 0 62. . .N
8.4 kg

m s2  

 
(b) According to Newton’s third law, the force of the sled on the girl is also 5.2 N. Her 
acceleration is 
 

a F
mg

g

= = =
52 013. . .N
40kg

m s2  

 
(c) The accelerations of the sled and girl are in opposite directions. Assuming the girl starts at the 
origin and moves in the +x direction, her coordinate is given by 21

2g gx a t= . The sled starts at x0 

= 1.5 m and moves in the –x direction. Its coordinate is given by 21
0 2s sx x a t= − . They meet 

when g sx x= , or  
 

2 2
0

1 1 .
2 2g sa t x a t= −  

 
This occurs at time 
 

t x
a ag s

=
+

2 0 .  

 
By then, the girl has gone the distance 
 

x a t
x a

a ag g
g

g s

= =
+

=
+

=
1
2

15 013
013 0 62

2 62 0 b gb g.
. .

. m.  

 
28. We label the 40 kg skier “m” which is represented as a block in the figure shown. The force 
of the wind is denoted F  and might be either “uphill” or “downhill”  (it is shown uphill in our 
sketch). The incline angle θ is 10°. The −x direction is downhill. 

w
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(a) Constant velocity implies zero acceleration; thus, application of Newton’s second law along 
the x axis leads to 
 

mg Fwsin .θ − = 0  
 
This yields Fw = 68 N (uphill). 
 
(b) Given our coordinate choice, we have a =| a |= 1.0 m/s2. Newton’s second law 
 

mg F mawsin θ − =  
 
now leads to Fw = 28 N (uphill). 
  
(c) Continuing with the forces as shown in our figure, the equation 
 

mg F mawsin θ − =  
 
will lead to Fw = – 12 N when | a | = 2.0 m/s2. This simply tells us that the wind is opposite to the 
direction shown in our sketch; in other words, 12 NwF =  downhill. 
 
29. The free-body diagram is shown next. NF  is the normal force of the plane on the block and 

 is the force of gravity on the block. We take the +x direction to be down the incline, in the 
direction of the acceleration, and the +y direction to be in the direction of the normal force 
exerted by the incline on the block. The x component of Newton’s second law is then mg sin θ = 
ma; thus, the acceleration is a = g sin θ. 

mg

 

 
 
(a) Placing the origin at the bottom of the plane, the kinematic equations (Table 2-1) for motion 
along the x axis which we will use are v v  and a2

0
2 2= + x v v at= +0 . The block momentarily 

stops at its highest point, where v = 0; according to the second equation, this occurs at time 
t v= − 0 a . The position where it stops is 

( )
2 2
0

2

1 1 ( 3.50 m/s) 1.18 m
2 2 9.8 m/s sin 32.0

vx
a

⎛ ⎞−⎜ ⎟= − =− =−
⎜ ⎟°⎝ ⎠

, 
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or |  | 1.18 m.x =
 
(b) The time is 

( )
0 0

2

3.50m/s 0.674s.
sin 9.8m/s sin 32.0

v vt
a g θ

−
= = − = − =

°
 

 
(c) That the return-speed is identical to the initial speed is to be expected since there are no 
dissipative forces in this problem. In order to prove this, one approach is to set x = 0 and solve 
x v t at= +0

1
2

2  for the total time (up and back down) t. The result is 
 

t v
a

v
g

= − = − = −
−

°
=

2 2 2 350
9 8 32 0

1350 0

sin
.

. sin .
. .

θ
m / s

m / s
s

2

b g
c h  

 
The velocity when it returns is therefore 
 

v v at v gt= + = + = − + ° =0 0 350 9 8 135 32 350sin . . . sin .θ b g b g m / s.  
 
31. The solutions to parts (a) and (b) have been combined here. The free-body diagram is shown 
below, with the tension of the string T , the force of gravity mg , and the force of the air F . Our 
coordinate system is shown. Since the sphere is motionless the net force on it is zero, and the x 
and the y components of the equations are: 
 

  T sin θ – F = 0 
T cos θ – mg = 0, 

 
where θ = 37°. We answer the questions in the reverse order. Solving T cos θ – mg = 0 for the 
tension, we obtain  
 

T = mg/ cos θ = (3.0 × 10–4) (9.8) / cos 37° = 3.7 × 10–3 N. 
 
Solving T sin θ – F = 0 for the force of the air:  
 

F = T sin θ = (3.7 × 10–3 ) sin 37° = 2.2 × 10–3 N. 
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33. The free-body diagram is shown below. Let T  be the tension of the cable and mg  be the 
force of gravity. If the upward direction is positive, then Newton’s second law is T – mg = ma, 
where a is the acceleration. 
 
Thus, the tension is T = m(g + a). We use constant acceleration kinematics (Table 2-1) to find the 
acceleration (where v = 0 is the final velocity, v0 = – 12 m/s is the initial velocity, and 

is the coordinate at the stopping point). Consequently, v v leads to 42 my = − a2
0
2 2= + y

 
( )
( )

22
20 12

1.71 m/s
2 2 42
va

y
−

= − = − =
−

. 

 
We now return to calculate the tension: 

T m g a= +

= +

= ×

b g
b g c h1600 9 8 171

18 10

2 2

4

kg m / s m / s

N

. .

. .

 

 
 
34. (a) The term “deceleration”  means the acceleration vector is in the direction opposite to the 
velocity vector (which the problem tells us is downward). Thus (with +y upward) the 
acceleration is a = +2.4 m/s2. Newton’s second law leads to 
 

T mg ma m T
g a

− = ⇒ =
+

 

 
which yields m = 7.3 kg for the mass. 
 
(b) Repeating the above computation (now to solve for the tension) with a = +2.4 m/s2 will, of 
course, lead us right back to T = 89 N. Since the direction of the velocity did not enter our 
computation, this is to be expected. 
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37. The mass of the bundle is m = (449/9.80) = 45.8 kg and we choose +y upward. 
 
(a) Newton’s second law, applied to the bundle, leads to 
 

T mg ma a− = ⇒ =
−387 449

458.
 

 
which yields a = –1.4 m/s2 (or |a| = 1.4 m/s2) for the acceleration. The minus sign in the result 
indicates the acceleration vector points down. Any downward acceleration of magnitude greater 
than this is also acceptable (since that would lead to even smaller values of tension). 
 
(b) We use Eq. 2-16 (with ∆x replaced by ∆y = –6.1 m). We assume ν0 = 0. 
 

v a y= = − − =2 2 135 61 4 1∆ . . .b gb g m / s.  
 
For downward accelerations greater than 1.4 m/s2, the speeds at impact will be larger than 4.1 
m/s. 

 
41. The force diagram (not to scale) for the block is shown below. NF  is the normal force exerted 
by the floor and mg  is the force of gravity. 
 

 
 
(a) The x component of Newton’s second law is F cosθ = ma, where m is the mass of  the block 
and a is the x component of its acceleration. We obtain 
 

a F
m

= =
°
=

cos . cos .
.

. .θ 12 0 250
500

218
N

kg
m / s2b g  

 
This is its acceleration provided it remains in contact with the floor. Assuming it does, we find 
the value of FN (and if FN is positive, then the assumption is true but if FN is negative then the 
block leaves the floor). The y component of Newton’s second law becomes  
 

FN + F sinθ – mg = 0, 
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so  
 

FN = mg – F sinθ = (5.00)(9.80) – (12.0) = 43.9 N. 

ence the block remains on the floor and its acceleration is a = 2.18 m/s2. 

nd the y 
omponent of the acceleration vanishes. The y component of the second law becomes   

 

F sinθ – mg = 0    

sin 25.0°
 
H
 
(b) If F is the minimum force for which the block leaves the floor, then FN = 0 a
c

⇒   ( )( )5.00 9.80
116N.

sin sin 25.0
mgF
θ

= = =
°

 

 
(c) The acceleration is still in the x direction and is still given by the equation developed in part 

): 
 
(a

2cos 116 cos 25.0 21.0m/s .
5.00

Fa
m

θ °
= = =  

 
43. The free-body diagrams for part (a) are shown below. F  is the applied force and f  is the 
force exerted by block 1 on block 2. We note that F  is applied directly to block 1 and that block 
 exerts the force  on block 1 (taking Newton’s third law into account). 

 
 − f2

 
 

(a) Newton’s second law for block 1 is F – f = m1a, where a is the acceleration. The second law 
for block 2 is f = m2a. Since the blocks move together they have the same acceleration and the 
same symbol is used in both equations. From the second equation we obtain the expression a = f 

2, which we substitute into the first equation to get F – f = m1f/m2. Therefore, 
 
/m

f Fm
m m

=
+

=
+

=2

1 2

3 2 12
2 3 12

11
. .
. .

. .
N kg
kg kg

Nb g b g  

 
(b) If F  is applied to block 2 instead of block 1 (and in the opposite direction), the force of 
ontact between the blocks is 

 
c
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f Fm
m m

=
+

=
+

=1

1 2

3 2 2 3
2 3 12

21
. .
. .

. .
N kg
kg kg

Nb g b g  

 
(c) We note that the acceleration of the blocks is the same in the two cases. In part (a), the force f 
is the only horizontal force on the block of mass m2 and in part (b) f is the only horizontal force 
on the block with m1 > m2. Since f = m2a in part (a) and f = m1a in part (b), then for the 
accelerations to be the same, f must be larger in part (b). 
 
 
46. (a) The net force on the system (of total mass M = 80.0 kg) is the force of gravity acting on 
the total overhanging mass (mBC = 50.0 kg).  The magnitude of the acceleration is therefore a = 
(mBC g)/M = 6.125 m/s2.  Next we apply Newton’s second law to block C itself (choosing down 
as the +y direction) and obtain   
 

mC g – TBC   = mC a. 
 
This leads to TBC  = 36.8 N. 
 
(b) We use Eq. 2-15 (choosing rightward as the +x direction): ∆x = 0 + 12 at2 = 0.191 m. 
 
 
50. The motion of the man-and-chair is positive if upward. 
 
(a) When the man is grasping the rope, pulling with a force equal to the tension T in the rope, the 
total upward force on the man-and-chair due its two contact points with the rope is 2T. Thus, 
Newton’s second law leads to 
 

2T mg ma− =  
 
so that when a = 0, the tension is T = 466 N. 
 
(b) When a = +1.30 m/s2 the equation in part (a) predicts that the tension will be . 527 NT =
 
(c) When the man is not holding the rope (instead, the co-worker attached to the ground is 
pulling on the rope with a force equal to the tension T in it), there is only one contact point 
between the rope and the man-and-chair, and Newton’s second law now leads to 
 

T mg ma− =  
 
so that when a = 0, the tension is T = 931 N. 
 
(d) When a = +1.30 m/s2, the equation in (c) yields T = 1.05 × 103 N. 
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(e) The rope comes into contact (pulling down in each case) at the left edge and the right edge of 
the pulley, producing a total downward force of magnitude 2T on the ceiling. Thus, in part (a) 
this gives 2T = 931 N. 
 
(f) In part (b) the downward force on the ceiling has magnitude 2T = 1.05 × 103 N. 
 
(g) In part (c) the downward force on the ceiling has magnitude 2T = 1.86 × 103 N. 
 
(h) In part (d) the downward force on the ceiling has magnitude 2T = 2.11 × 103 N. 
 
51. The free-body diagram for each block is shown below. T is the tension in the cord and θ = 
30° is the angle of the incline. For block 1, we take the +x direction to be up the incline and the 
+y direction to be in the direction of the normal force NF  that the plane exerts on the block. For 
block 2, we take the +y direction to be down. In this way, the accelerations of the two blocks can 
be represented by the same symbol a, without ambiguity. Applying Newton’s second law to the x 
and y axes for block 1 and to the y axis of block 2, we obtain 
 

1 1

1

2 2

sin
cos 0N

T m g m a
F m g

m g T m a

θ
θ

− =
− =

− =
 

 
respectively. The first and third of these equations provide a simultaneous set for obtaining 
values of a and T. The second equation is not needed in this problem, since the normal force is 
neither asked for nor is it needed as part of some further computation (such as can occur in 
formulas for friction). 
 

 
 
(a) We add the first and third equations above:  
 

m2g – m1g sin θ = m1a + m2a. 
 
Consequently, we find 
 

( ) ( )2 1 2

1 2

sin (2.30 3.70 sin 30.0 ) 9.80
0.735m/s .

3.70 2.30
m m g

a
m m

θ− − °
= = =

+ +
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(b) The result for a is positive, indicating that the acceleration of block 1 is indeed up the incline 
and that the acceleration of block 2 is vertically down. 
 
(c) The tension in the cord is 
 

( ) ( ) ( ) ( )1 1 sin 3.70 0.735 3.70 9.80 sin 30.0 20.8N.T m a m g θ= + = + ° =  
 
53. The forces on the balloon are the force of gravity mg  (down) and the force of the air Fa  
(up). We take the +y to be up, and use a to mean the magnitude of the acceleration (which is not 
its usual use in this chapter). When the mass is M (before the ballast is thrown out) the 
acceleration is downward and Newton’s second law is  
 

Fa – Mg = –Ma. 
 
After the ballast is thrown out, the mass is M – m (where m is the mass of the ballast) and the 
acceleration is upward. Newton’s second law leads to  
 

Fa – (M – m)g = (M – m)a. 
 
The previous equation gives Fa = M(g – a), and this plugs into the new equation to give 
 

M g a M m g M m a m Ma
g a

− − − = − ⇒ =
+

b g b g b g 2 . 
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