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Halliday/Resnick/Walker 7e 
Chapter 6 
 
3. We do not consider the possibility that the bureau might tip, and treat this as a purely 
horizontal motion problem (with the person’s push F  in the +x direction). Applying Newton’s 
second law to the x and y axes, we obtain 

, max

0
s

N

F f m
F mg

a− =
− =

 

respectively. The second equation yields the normal force FN = mg, whereupon the maximum 
static friction is found to be (from Eq. 6-1) f s s,max mg= µ . Thus, the first equation becomes 
 

F mg mas− = =µ 0  
 
where we have set a = 0 to be consistent with the fact that the static friction is still (just barely) 
able to prevent the bureau from moving. 
 
(a) With µ s = 0 45.  and m = 45 kg, the equation above leads to F = 198 N. To bring the bureau 
into a state of motion, the person should push with any force greater than this value. Rounding to 
two significant figures, we can therefore say the minimum required push is F = 2.0 × 102 N. 
 
(b) Replacing m = 45 kg with m = 28 kg, the reasoning above leads to roughly . 21.2 10  NF = ×
  
 
6. The greatest deceleration (of magnitude a) is provided by the maximum friction force (Eq. 6-1, 
with FN = mg in this case).  Using Newton’s second law, we find  
 

a = fs,max /m = µsg. 
 
Eq. 2-16 then gives the shortest distance to stop: |∆x| = v2/2a = 36 m.  In this calculation, it is 
important to first convert v to 13 m/s. 
 
7. We choose +x horizontally rightwards and +y upwards and observe that the 15 N force has 
components Fx = F cos θ and Fy = – F sin θ. 
 
(a) We apply Newton’s second law to the y axis: 
 

sin 0 (15) sin 40 (3.5) (9.8) 44 N.N NF F mg Fθ− − = ⇒ = ° + =  
 
With µk = 0.25, Eq. 6-2 leads to fk = 11 N. 
 
(b) We apply Newton’s second law to the x axis: 

( ) 215 cos 40 11
cos 0.14 m/s

3.5kF f ma aθ
° −

− = ⇒ = = . 
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Since the result is positive-valued, then the block is accelerating in the +x (rightward) direction. 
 
9. Applying Newton’s second law to the horizontal motion, we have F − µk m g = ma, where we 
have used Eq. 6-2, assuming that FN = mg (which is equivalent to assuming that the vertical force 
from the broom is negligible). Eq. 2-16 relates the distance traveled and the final speed to the 
acceleration: v2 = 2a∆x.  This gives a = 1.4 m/s2. Returning to the force equation, we find (with F 
= 25 N and m = 3.5 kg) that µk = 0.58. 
 
13. (a) The free-body diagram for the crate is shown below. T  is the tension force of the rope on 
the crate,  is the normal force of the floor on the crate, mgNF  is the force of gravity, and f  is 
the force of friction. We take the +x direction to be horizontal to the right and the +y direction to 
be up. We assume the crate is motionless. The equations for the x and the y components of the 
force according to Newton’s second law are: 
 

          T cos θ – f = 0 
sin 0NT F mgθ + − =  

 
where θ = 15° is the angle between the rope and the horizontal. The first equation gives f = T cos 
θ and the second gives FN = mg – T sin θ. If the crate is to remain at rest, f must be less than µs 
FN, or T cos θ < µs (mg – T sinθ). When the tension force is sufficient to just start the crate 
moving, we must have  
 

T cos θ = µs (mg – T sin θ). 
 
We solve for the tension: 

( ) ( ) ( )

2

cos sin
0.50 68 9.8

cos 15 0.50 sin 15
304 3.0 10 N.

s

s

mgT µ
θ µ θ

=
+

=
° + °

= ≈ ×

 

 
 
(b) The second law equations for the moving crate are  
 

             T cos θ – f = ma 
FN + T sin θ – mg = 0. 

 
Now f =µkFN, and the second equation gives FN = mg – Tsinθ, which yields 

( sinkf mg T )µ θ= − . This expression is substituted for f in the first equation to obtain  
 

T cos θ – µk (mg – T sin θ) = ma, 
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so the acceleration is 
 

( )cos sink
k

T
a g

m
θ µ θ

µ
+

= − . 

 
Numerically, it is given by 
 

a =
° + °

− =
304 15 0 35 15

68
0 35 9 8 13

N
kg

m / s m / s2 2b gb g b gc hcos . sin
. . . .  

 
 
15. (a) The free-body diagram for the block is shown below. F is the 
applied force, F  is the normal force of the wall on the block, N f  is the 
force of friction, and mg  is the force of gravity. To determine if the 
block falls, we find the magnitude f of the force of friction 
required to hold it without accelerating and also find the normal force 
of the wall on the block. We compare f and µsFN. If f < µsFN, the block 
does not slide on the wall but if f > µsFN, the block does slide. The 
horizontal component of Newton’s second law is F –FN = 0, so FN = 
F = 12 N and µsFN = (0.60)(12 N) = 7.2 N. The vertical 
component is f – mg = 0, so f = mg = 5.0 N. Since f < µsFN the block does not slide. 
 
(b) Since the block does not move f = 5.0 N and FN = 12 N. The force of the wall on the block is 
 

( ) ( )ˆ ˆ ˆi j 12N i 5.0N jw NF F f= − + = − + ˆ  
 
where the axes are as shown on Fig. 6-25 of the text. 
 
16. We find the acceleration from the slope of the graph (recall Eq. 2-11): a = 4.5 m/s2.  The 
forces are similar to what is discussed in Sample Problem 6-2 but with the angle φ equal to 0 (the 
applied force is horizontal), and in this problem the horizontal acceleration is not zero.  Thus, 
Newton’s second law leads to  
 

F – µk mg = ma, 
 
where F = 40.0 N is the constant horizontal force applied. With m = 4.1 kg, we arrive at µk =0.54. 
 
17. Fig. 6-4 in the textbook shows a similar situation (using φ  for the unknown angle) along 
with a free-body diagram. We use the same coordinate system as in that figure. 
 
(a) Thus, Newton’s second law leads to 
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     cos    along  axis
sin 0   along  axisN

T f ma x
T F mg y

φ
φ

− =
+ − =  

 
Setting a = 0 and f = fs,max = µsFN, we solve for the mass of the box-and-sand (as a function of 
angle): 
 

m T
g s

= +
F
HG

I
KJsin cosφ φ

µ
 

 
which we will solve with calculus techniques (to find the angle φ m  corresponding to the 
maximum mass that can be pulled). 
 

dm
dt

T
g m

m

s

= −
F
HG

I
KJ =cos sinφ φ

µ
0 

 
This leads to tan φ µm = s  which (for µ s = 0 35. ) yields φ m = °19 . 
 
(b) Plugging our value for φ m  into the equation we found for the mass of the box-and-sand 
yields m = 340 kg. This corresponds to a weight of mg = 3.3 × 103 N. 
 
 
21. The free-body diagrams for block B and for the knot just above block A are shown next. T1  is 
the tension force of the rope pulling on block B or pulling on the knot (as the case may be), T2  is 
the tension force exerted by the second rope (at angle θ = 30°) on the knot,  is the force of 
static friction exerted by the horizontal surface on block B, 

f

NF  is normal force exerted by the 
surface on block B, WA is the weight of block A (WA is the magnitude of m ), and WgA B is the 
weight of block B (WB = 711 N is the magnitude of m gB ). 

 
 
For each object we take +x horizontally rightward and +y upward. Applying Newton’s second 
law in the x and y directions for block B and then doing the same for the knot results in four 
equations: 
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1 ,max

2 1

2

0
0

cos 0
sin 0

s

N B

A

T f
F W

T T
T W

θ
θ

− =
− =
− =

− =

 

 
where we assume the static friction to be at its maximum value (permitting us to use Eq. 6-1). 
Solving these equations with µs = 0.25, we obtain . 2103 N 1.0 10  NAW = ≈ ×
 
22. Treating the two boxes as a single system of total mass mC + mW =1.0 + 3.0 = 4.0 kg, subject 
to a total (leftward) friction of magnitude 2.0 + 4.0 = 6.0 N, we apply Newton’s second law (with 
+x rightward): 
 

  
(4.0)

total totalF f m a
a

− =
− =12 0 6 0. .

 

 
which yields the acceleration a = 1.5 m/s2. We have treated F as if it were known to the nearest 
tenth of a Newton so that our acceleration is “good” to two significant figures. Turning our 
attention to the larger box (the Wheaties box of mass mW = 3.0 kg) we apply Newton’s second 
law to find the contact force F' exerted by the Cheerios box on it. 
 

W W

4.0 (3.0)(1.5)
F f m a
F

′ − =
′ − =

 

 
This yields the contact force F' = 8.5 N. 
 
28. (a) Free-body diagrams for the blocks A and C, considered as a single object, and for the 
block B are shown below. T is the magnitude of the tension force of the rope, FN is the 
magnitude of the normal force of the table on block A, f is the magnitude of the force of friction, 
WAC is the combined weight of blocks A and C (the magnitude of force F  shown in the 

figure), and W
g AC

B is the weight of block B (the magnitude of force  Fg B  shown). Assume the 
blocks are not moving. For the blocks on the table we take the x axis to be to the right and the y 
axis to be upward. From Newton’s second law, we have 
 

       x component:            T – f = 0 
 

        y component:     FN – WAC = 0. 
 
For block B take the downward direction to be positive. Then Newton’s second law for that 
block is WB – T = 0. The third equation gives T = WB and the first gives f = T = WB. The second 
equation gives FN = WAC. If sliding is not to occur, f must be less than µs FN, or WB < µs WAC. The 
smallest that WAC can be with the blocks still at rest is  
 

WAC = WB/µs = (22 N)/(0.20) = 110 N. 
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Since the weight of block A is 44 N, the least weight for C is (110 – 44) N = 66 N. 
 

 
 

(b) The second law equations become  
 

                     T – f  = (WA/g)a  
 FN – WA  = 0 

              WB – T = (WB/g)a. 
 
In addition, f = µkFN. The second equation gives FN = WA, so f = µkWA. The third gives T = WB – 
(WB/g)a. Substituting these two expressions into the first equation, we obtain 
 

WB – (WB/g)a – µkWA = (WA/g)a. 
 
Therefore, 
 

( ) ( )( )( )2
2(9.8 m/s ) 22 N 0.15 44 N

2.3 m/s .
44 N + 22 N

B k A

A B

g W W
a

W W
µ −−

= = =
+

 

 
32. Using Eq. 6-16, we solve for the area 
 

2

2

t

m gA
C vρ

 

 
which illustrates the inverse proportionality between the area and the speed-squared. Thus, when 
we set up a ratio of areas – of the slower case to the faster case – we obtain 
 

A
A

slow

fast

 km / h
160 km / h

= FHG
I
KJ =

310 3 75
2

. .  

 
36. The magnitude of the acceleration of the car as it rounds the curve is given by v2/R, where v 
is the speed of the car and R is the radius of the curve. Since the road is horizontal, only the 
frictional force of the road on the tires makes this acceleration possible. The horizontal 
component of Newton’s second law is f = mv2/R. If FN is the normal force of the road on the car 
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and m is the mass of the car, the vertical component of Newton’s second law leads to FN = mg. 
Thus, using Eq. 6-1, the maximum value of static friction is  

fs,max = µs FN = µsmg. 
 
If the car does not slip, f ≤ µsmg. This means 
 

2

   s s
v g v R
R

µ µ≤ ⇒ ≤ .g  

 
Consequently, the maximum speed with which the car can round the curve without slipping is 
 

max (0.60)(30.5)(9.8) 13 m/s 48 km/h.sv Rgµ= = = ≈  
 
37. The magnitude of the acceleration of the cyclist as it rounds the curve is given by v2/R, where 
v is the speed of the cyclist and R is the radius of the curve. Since the road is horizontal, only the 
frictional force of the road on the tires makes this acceleration possible. The horizontal 
component of Newton’s second law is f = mv2/R. If FN is the normal force of the road on the 
bicycle and m is the mass of the bicycle and rider, the vertical component of Newton’s second 
law leads to FN = mg. Thus, using Eq. 6-1, the maximum value of static friction is fs,max = µs FN = 
µsmg. If the bicycle does not slip, f ≤ µsmg. This means 
 

v
R

g R v
gs

s

2 2

≤ ⇒ ≥µ
µ

    .  

 
Consequently, the minimum radius with which a cyclist moving at 29 km/h = 8.1 m/s can round 
the curve without slipping is 
 

2 2

min 2

(8.1 m/s) 21 m.
(0.32)(9.8 m/s )s

vR
gµ

= = =  

 
39. Perhaps surprisingly, the equations pertaining to this situation are exactly those in Sample 
Problem 6-9, although the logic is a little different.  In the Sample Problem, the car moves along 
a (stationary) road, whereas in this problem the cat is stationary relative to the merry-go-around 
platform.  But the static friction plays the same role in both cases since the bottom-most point of 
the car tire is instantaneously at rest with respect to the race track, just as static friction applies to 
the contact surface between cat and platform.  Using Eq. 6-23 with Eq. 4-35, we find  
 

µs = (2πR/T )2/gR = 4π2R/gT 2. 
 
With T = 6.0 s and R = 5.4 m, we obtain µs = 0.60. 
 
41. At the top of the hill, the situation is similar to that of Sample Problem 6-7 but with the 
normal force direction reversed.  Adapting Eq. 6-19, we find  
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FN = m(g – v2/R). 
 
Since FN = 0 there (as stated in the problem) then v2 = gR.  Later, at the bottom of the valley, we 
reverse both the normal force direction and the acceleration direction (from what is shown in 
Sample Problem 6-7) and adapt Eq. 6-19 accordingly.  Thus we obtain  
 

FN = m(g + v2/R) = 2mg = 1372 N ≈ 1.37 × 103 N. 
 
42. (a) We note that the speed 80.0 km/h in SI units is roughly 22.2 m/s.  The horizontal force 
that keeps her from sliding must equal the centripetal force (Eq. 6-18), and the upward force on 
her must equal mg. Thus,  
 

Fnet = (mg)2 + (mv2/R)2   = 547 N. 
 
(b) The angle is tan−1[(mv2/R)/(mg)] = tan−1(v2/gR) = 9.53º (as measured from a vertical axis). 
 
45. (a) At the top (the highest point in the circular motion) the seat pushes up on the student with 
a force of magnitude FN = 556 N. Earth pulls down with a force of magnitude W = 667 N. The 
seat is pushing up with a force that is smaller than the student’s weight, and we say the student 
experiences a decrease in his “apparent weight” at the highest point. Thus, he feels “light.” 
 
(b) Now FN is the magnitude of the upward force exerted by the seat when the student is at the 
lowest point. The net force toward the center of the circle is Fb – W = mv2/R (note that we are 
now choosing upward as the positive direction). The Ferris wheel is “steadily rotating” so the 
value mv R2  is the same as in part (a). Thus, 
 

2

111 N 667 N 778 N.N
mvF W
R

= + = + =  

 
(c) If the speed is doubled, mv R2  increases by a factor of 4, to 444 N. Therefore, at the highest 
point we have 2

NW F mv R− = , which leads to 
 

667 N 444 N 223 N.NF = − =  
 
(d) Similarly, the normal force at the lowest point is now found to be 
 

667 N  444 N  1.11 kN.NF = + ≈  
 
49. For the puck to remain at rest the magnitude of the tension force T of the cord must equal the 
gravitational force Mg on the cylinder. The tension force supplies the centripetal force that keeps 
the puck in its circular orbit, so T = mv2/r. Thus Mg = mv2/r. We solve for the speed: 
 

(2.50)(9.80)(0.200) 1.81 m/s.
1.50

Mgrv
m

= = =  
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55. We apply Newton’s second law (as Fpush – f = ma).  If we find Fpush < fmax, we conclude “no, 
the cabinet does not move” (which means a is actually 0 and f = Fpush), and if we obtain a > 0 
then it is moves (so f = fk).  For fmax and fk  we use Eq. 6-1 and Eq. 6-2 (respectively), and in 
those formulas we set the magnitude of the normal force equal to 556 N.  Thus, fmax = 378 N and  
fk = 311 N. 
 
(a) Here we find Fpush < fmax which leads to f = Fpush = 222 N. 
 
(b) Again we find Fpush < fmax which leads to f = Fpush = 334 N. 
 
(c) Now we have Fpush > fmax which means it moves and  f = fk = 311 N. 
 
(d) Again we have Fpush > fmax which means it moves and  f = fk = 311 N. 
 
(e) The cabinet moves in (c) and (d). 
 
56. Sample Problem 6-3 treats the case of being in “danger of sliding” down the θ ( = 35.0º in 
this problem) incline: tanθ = µs = 0.700 (Eq. 6-13).  This value represents a 3.4% decrease from 
the given 0.725 value. 
58. (a) The x component of F  

→
 tries to move the crate while its y component indirectly 

contributes to the inhibiting effects of friction (by increasing the normal force).  Newton’s 
second law implies 
 

x direction:  Fcosθ – fs = 0 
 

           y direction:  FN – Fsinθ – mg = 0. 
 
To be “on the verge of sliding” means fs = fs,max = µsFN  (Eq. 6-1).  Solving these equations for F 
(actually, for the ratio of F to mg) yields 
 

 
cos sin

s

s

F
mg

µ
θ µ θ

=
−

   . 

This is plotted below (θ in degrees). 
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(b) The denominator of our expression (for F/mg) vanishes when  
 

1
inf

1cos sin 0     tans
s

θ µ θ θ
µ

− ⎛ ⎞
− = ⇒ = ⎜ ⎟

⎝ ⎠
 

 

For 0.70sµ = , we obtain
1

inf
1tan 55

s

θ
µ

− ⎛ ⎞
= =⎜ ⎟

⎝ ⎠
° . 

(c) Reducing the coefficient means increasing the angle by the condition in part (b). 
 

(d) For 0.60sµ = we have 
1

inf
1tan 59

s

θ
µ

− ⎛ ⎞
= =⎜ ⎟

⎝ ⎠
° . 

60. (a) The tension will be the greatest at the lowest point of the swing.  Note that there is no 
substantive difference between the tension T in this problem and the normal force FN in Sample 
Problem 6-7.  Eq. 6-19 of that Sample Problem examines the situation at the top of the circular 
path (where FN is the least), and rewriting that for the bottom of the path leads to  
 

T = mg + mv2/r 
 
where FN is at its greatest value. 
 
(b) At the breaking point T = 33 N = m(g + v2/r) where m = 0.26 kg and r = 0.65 m.  Solving for 
the speed, we find that the cord should break when the speed (at the lowest point) reaches 8.73 
m/s. 
 
70. (a) The coefficient of static friction is µs = tan(θslip) = 0.577 0.58≈ . 
 
(b) Using  
 

mg sinθ – f = ma 
 

         f = fk = µk FN = µk mg cosθ 
 
and a = 2d/t2 (with d = 2.5 m and t = 4.0 s), we obtain µk = 0.54. 
 
 
73. Replace fs with fk in Fig. 6-5(b) to produce the appropriate force diagram for the first part of 
this problem (when it is sliding downhill with zero acceleration).  This amounts to replacing the 
static coefficient with the kinetic coefficient in Eq. 6-13: µk = tanθ.  Now (for the second part of 
the problem, with the block projected uphill) the friction direction is reversed from what is 
shown in Fig. 6-5(b).  Newton’s second law for the uphill motion (and Eq. 6-12) leads to  
  

– m g sinθ – µk m g cosθ = m a. 
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Canceling the mass and substituting what we found earlier for the coefficient, we have  
 

– g sinθ – tanθ g cosθ = a . 
 
This simplifies to  – 2 g sinθ = a. Eq. 2-16 then gives the distance to stop: ∆x = –vo

2/2a. 
 
(a) Thus, the distance up the incline traveled by the block is ∆x = vo

2/(4gsinθ ). 
 
(b) We usually expect µs > µk  (see the discussion in section 6-1). Sample Problem 6-3 treats the 
“angle of repose” (the minimum angle necessary for a stationary block to start sliding downhill): 
µs = tan(θrepose).  Therefore, we expect θrepose > θ  found in part (a).  Consequently, when the 
block comes to rest, the incline is not steep enough to cause it to start slipping down the incline 
again. 
 
95. Except for replacing fs with fk, Fig 6-5 in the textbook is appropriate. With that figure in mind, 
we choose uphill as the +x direction. Applying Newton’s second law to the x axis, we have 
 

sin  where  ,k
Wf W ma m
g

θ− = =  

 
and where W = 40 N, a = +0.80 m/s2 and θ = 25°. Thus, we find fk = 20 N. Along the y axis, we 
have 
 

0 cNy
F F W osθ= ⇒ =∑  

 
so that µk = fk/ FN = 0.56. 
 
102. (a) The free-body diagram for the person (shown as an L-shaped block) is shown below. 
The force that she exerts on the rock slabs is not directly shown (since the diagram should only 
show forces exerted on her), but it is related by Newton’s third law) to the normal forces 1NF  and 

 exerted horizontally by the slabs onto her shoes and back, respectively. We will show in 
part (b) that F

2NF
N1 = FN2 so that we there is no ambiguity in saying that the magnitude of her push 

is FN2. The total upward force due to (maximum) stati is c friction f = here f f+1 2  w

11 1s Nf Fµ=  and 2 2 2s Nf Fµ= . The problem gives the values µs1 = 1.2 and µs2 = 0.8. 
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(b) We apply Newton’s second law to the x and y axes (with +x rightward and +y upward and 
there is no acceleration in either direction). 
 

1 2

1 2

0
0

N NF F
f f mg

− =

+ − =
 

 
The first equation tells us that the normal forces are equal FN1 = FN2 = FN. Consequently, from 
Eq. 6-1, 
 

1 s 1

2 s 2

N

N

f F

f F

µ

µ

=

=
 

 
we conclude that 

s 1
1 2

s 2

.f f
µ
µ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
Therefore, f1 + f2 – mg = 0 leads to 
 

s 1
2

s 2

1 f mg
µ
µ

⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
which (with m = 49 kg) yields f2 = 192 N. From this we find FN = f2/µs2 = 240 N. This is equal to 
the magnitude of the push exerted by the rock climber. 
 
(c) From the above calculation, we find 1 s1 288 NNf Fµ= =  which amounts to a fraction 
 

f
W

1 288
49 9 8

0 60= =b g b g. .  

 
or 60% of her weight. 
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