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Halliday/Resnick/Walker 7e 
Chapter 7 
 
2. (a) The change in kinetic energy for the meteorite would be 
 

( )( )22 6 31 1 4 10 kg 15 10 m/s 5 10 J
2 2f i i i iK K K K m v∆ = − = − = − = − × × = − × 14

J

, 

 
or . The negative sign indicates that kinetic energy is lost. 14| | 5 10  K∆ = ×
 
(b) The energy loss in units of megatons of TNT would be 
 

( )14
15

1 megaton TNT5 10 J    0.1megaton TNT.
4.2 10 J

K ⎛ ⎞
−∆ = × =⎜ ⎟×⎝ ⎠

 

 
(c) The number of bombs N that the meteorite impact would correspond to is found by noting 
that megaton = 1000 kilotons and setting up the ratio: 
 

0.1 1000kiloton TNT 8.
13kiloton TNT

N ×
= =  

 
3. (a) From Table 2-1, we have v v . Thus, a2

0
2 2= + ∆x

 

( ) ( ) ( )22 7 15
0 2 2.4 10 2 3.6 10 0.035 2.9 10 m/s.v v a x= + ∆ = × + × = × 7  

 
(b) The initial kinetic energy is 
 

( ) ( )22 27 7
0

1 1  1.67 10 kg 2.4 10 m/s 4.8 10 J.
2 2iK mv − −= = × × = × 13  

 
The final kinetic energy is 
 

( ) ( )22 27 71 1  1.67 10 kg 2.9 10 m/s 6.9 10 J.
2 2fK mv − −= = × × = × 13  

 
The change in kinetic energy is ∆K = (6.9 × 10–13 – 4.8 × 10–13) J = 2.1 × 10–13 J. 
 
4. We apply the equation 21

0 0 2( )x t x v t at= + + , found in Table 2-1. Since at t = 0 s, x0 = 0 and 
, the equation becomes (in unit of meters) 0 12 m/sv =
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 21
2( ) 12x t t a= + t . 

 
With when , the acceleration is found to be . The fact that 

implies that the bead is decelerating. Thus, the position is described by 
10 mx = 1.0 st = 24.0 m/sa = −

0a < 2( ) 12 2.0x t t= − t . 
Differentiating x with respect to t then yields  
 

 ( ) 12 4.0dxv t t
dt

= = − . 

 
Indeed at t =3.0 s, and the bead stops momentarily. The speed at ( 3.0)v t = = 0 10 st = is 

, and the corresponding kinetic energy is  ( 10) 28 m/v t = = − s
 

2 2 21 1 (1.8 10 kg)( 28 m/s) 7.1 J.
2 2

K mv −= = × − =  

 
6. By the work-kinetic energy theorem, 
 

( )2 2 2 21 1 1 (2.0 kg) (6.0 m/s) (4.0 m/s) 20 J.
2 2 2f iW K mv mv= ∆ = − = − =  

 
We note that the directions of  and v f vi  play no role in the calculation. 
 
7. Eq. 7-8 readily yields (with SI units understood)  
 

W =  Fx ∆x + Fy ∆y  = 2cos(100º)(3.0) + 2sin(100º)(4.0) = 6.8 J. 
 
10. The change in kinetic energy can be written as 
 

 2 21 1( ) (2 )
2 2f iK m v v m a x ma x∆ = − = ∆ = ∆  

 
where we have used   from Table 2-1. From Fig. 7-27, we see that 

when . The acceleration can then be obtained as 

2 2 2f iv v a= + ∆x
(0 30) J 30 JK∆ = − = − 5 mx∆ = +

 

 2( 30 J) 0.75 m/s .
(8.0 kg)(5.0 m)

Ka
m x
∆ −

= = = −
∆

 

 
The negative sign indicates that the mass is decelerating. From the figure, we also see that when 

the kinetic energy becomes zero, implying that the mass comes to rest momentarily. 
Thus, 

5 mx =

 
2 2 2 2
0 2 0 2( 0.75 m/s )(5.0 m) 7.5 m /sv v a x= − ∆ = − − = 2 , 
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or . The speed of the object when x = −3.0 m is  0 2.7 m/sv =
 
 2

0 2 7.5 2( 0.75)( 3.0) 12 3.5 m/sv v a x= + ∆ = + − − = = . 
 
11. We choose +x as the direction of motion (so a  and F  are negative-valued). 
 
(a) Newton’s second law readily yields 2(85kg) ( 2.0 m/s )F = −  so that  
 

2| | 1.7 10 NF F= = × . 
 
(b) From Eq. 2-16 (with v = 0) we have 
 

( )
( )

2
2 2
0 2

37 m/s
0 2     3.4 10

2 2.0 m/s
v a x x= + ∆ ⇒ ∆ = − = ×

−
m . 

 
Alternatively, this can be worked using the work-energy theorem. 
 
(c) Since  is opposite to the direction of motion (so the angle F φ  between  and F d x= ∆  is 
180°) then Eq. 7-7 gives the work done as . 45.8 10 JW F x= − ∆ = − ×
 
(d) In this case, Newton’s second law yields ( ) ( 285kg 4.0m/sF = − )  so that 

. 2| | 3.4 10 NF F= = ×
 
(e) From Eq. 2-16, we now have 
 

( )
( )

2
2

2

37 m/s
1.7 10 m.

2 4.0m/s
x∆ = − = ×

−
 

 
(f) The force  is again opposite to the direction of motion (so the angle φ is again 180°) so that 
Eq. 7-7 leads to  The fact that this agrees with the result of part (c) 
provides insight into the concept of work. 

F
45.8 10 J.W F x= − ∆ = − ×

 
13. (a) The forces are constant, so the work done by any one of them is given by W F d= ⋅ , 
where  is the displacement. Force d F1  is in the direction of the displacement, so 
 

1 1 1cos (5.00 N)(3.00m)cos0 15.0 J.W F d φ= = ° =  
 
Force  makes an angle of 120° with the displacement, so F2
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2 2 2cos (9.00 N)(3.00m)cos120 13.5 J.W F d φ= = ° = −  
 
Force  is perpendicular to the displacement, so WF3 3 = F3d cos φ3 = 0 since cos 90° = 0. The net 
work done by the three forces is 
 

1 2 3 15.0 J 13.5 J 0 1.50 J.W W W W= + + = − + = +  
 
(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the 
displacement. 
 
17. (a) We use  to denote the upward force exerted by the cable on the astronaut. The force of 
the cable is upward and the force of gravity is mg downward. Furthermore, the acceleration of 
the astronaut is g/10 upward. According to Newton’s second law, F – mg = mg/10, so F = 11 
mg/10. Since the force F  and the displacement 

F

d  are in the same direction, the work done by 
 is F

 

W Fd mgd
F = = = = ×

11
10

11
10

1164
 (72 kg) 9.8 m / s  (15 m)

  10  J
2

4c h
.  

 
which (with respect to significant figures) should be quoted as 1.2 × 104 J. 
 
(b) The force of gravity has magnitude mg and is opposite in direction to the displacement. Thus, 
using Eq. 7-7, the work done by gravity is 
 

W mgdg = − = − = − × (72 kg) 9.8 m / s  (15 m)    10  J2 4c h 1058.  
 
which should be quoted as – 1.1 × 104 J. 
 
(c) The total work done is W . Since the astronaut 
started from rest, the work-kinetic energy theorem tells us that this (which we round to 

) is her final kinetic energy. 

= × − × = ×1164. 10 J 1.058 10 J 1.06 10 J4 4 3

1 1. ×10 J3

 
(d) Since K mv= 1

2
2 ,  her final speed is 

 

v K
m

= =
×

=
2 2 106 10 54

3( . .J)
72 kg

 m / s.  

 
19. (a) We use F to denote the magnitude of the force of the cord on the block. This force is 
upward, opposite to the force of gravity (which has magnitude Mg). The acceleration is 

downward. Taking the downward direction to be positive, then Newton’s second law 
yields 
a g= / 4
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F ma Mg F M g
net    = ⇒ − = FHG

I
KJ4  

 
so F = 3Mg/4. The displacement is downward, so the work done by the cord’s force is, using Eq. 
7-7,  
 

WF = –Fd = –3Mgd/4. 
 

(b) The force of gravity is in the same direction as the displacement, so it does work gW Mgd= . 
 
(c) The total work done on the block is − + =3 4M gd M gd M gd 4 . Since the block starts 
from rest, we use Eq. 7-15 to conclude that this M gd 4b g  is the block’s kinetic energy K at the 
moment it has descended the distance d. 
 
(d) Since 21

2 ,K Mv=   the speed is 
 

v K
M

Mgd
M

gd
= = =

2 2 4
2

( / )  

 
at the moment the block has descended the distance d. 
 
21. Eq. 7-15 applies, but the wording of the problem suggests that it is only necessary to examine 
the contribution from the rope (which would be the “Wa” term in Eq. 7-15):  
 

Wa = −(50 N)(0.50 m) =   −25 J 
 
(the minus sign arises from the fact that the pull from the rope is anti-parallel to the direction of 
motion of the block).  Thus, the kinetic energy would have been 25 J greater if the rope had not 
been attached (given the same displacement). 
 
 
24. The spring constant is k = 100 N/m and the maximum elongation is xi = 5.00 m. Using Eq. 7-
25 with xf = 0, the work is found to be 
 

W kxi= = = ×
1
2

1
2

125 102 3 (100)(5.00)  J.2 .  

 
 
 
27. The work done by the spring force is given by Eq. 7-25: 
 

 2 21 ( )
2s i fW k x x= − . 
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Since , the slope in Fig. 7-35 corresponds to the spring constant k. Its value is given by 
.  

xF k= − x
380 N/cm=8.0 10  N/mk = ×

 
(a) When the block moves from to 8.0 cmix = + 5.0 cmx = + , we have 
 

 3 2 21 (8.0 10  N/m)[(0.080 m) (0.050 m) ] 15.6 J 16 J.
2sW = × − = ≈  

 
(b) Moving from to 8.0 cmix = + 5.0 cmx = − , we have 
 

3 2 21 (8.0 10  N/m)[(0.080 m) ( 0.050 m) ] 15.6 J 16 J.
2sW = × − − = ≈  

 
(c) Moving from to 8.0 cmix = + 8.0 cmx = − , we have 
 

3 21 (8.0 10  N/m)[(0.080 m) ( 0.080 m) ] 0 J.
2sW = × − − =2  

 
(d) Moving from to 8.0 cmix = + 10.0 cmx = − , we have 
 

3 2 21 (8.0 10  N/m)[(0.080 m) ( 0.10 m) ] 14.4 J 14 J.
2sW = × − − = − ≈ −  

 
29. (a) As the body moves along the x axis from xi = 3.0 m to xf = 4.0 m the work done by the 
force is 
 

2 2 2 2 6  3( ) 3 (4.0 3.0 ) 21 J.f f

i i

x x

x f ix x
W F dx x dx x x= = − = − − = − − = −∫ ∫  

 
According to the work-kinetic energy theorem, this gives the change in the kinetic energy: 
 

W K m v vf i= = −∆
1
2

2 2d i  
 
where vi is the initial velocity (at xi) and vf is the final velocity (at xf). The theorem yields 
 

2 22 2( 21) (8.0) 6.6 m/s.
2.0f i

Wv v
m

−
= + = + =  

 
(b) The velocity of the particle is vf = 5.0 m/s when it is at x = xf. The work-kinetic energy 
theorem is used to solve for xf. The net work done on the particle is ( )2 23 f iW x x= − − , so the 
theorem leads to 
 

  



HRW 7e Chapter 7 Page 7 of 13 
 

− − = −3 1
2

2 2 2 2x x m v vf i f id i d .i  
 
Thus, 
 

( ) ( )2 2 2 2 2 22.0 kg (5.0 m/s) (8.0 m/s) (3.0 m) 4.7 m.
6 6 N/mf f i i
mx v v x= − − + = − − + =  

 
. 
31. According to the graph the acceleration a varies linearly with the coordinate x. We may write 
a = αx, where α is the slope of the graph. Numerically, 
 

α = = −20
8 0

2 5 2 m / s
 m

 s
2

.
. .  

 
The force on the brick is in the positive x direction and, according to Newton’s second law, its 
magnitude is given by F a m m x= = αb g .  If xf is the final coordinate, the work done by the force 
is 
 

2 2

0 0

2.5  (8.0) 8.0 10 J.
2 2(10)

f fx x

fW F dx x dx x
m m

2  α α
= = = = = ×∫ ∫  

 
 

0 2 2 4 4 6 6 8 (20 10 0 5) J 25 J.x x x xW W W W W< < < < < < < <= + + + = + + − =  
 
 
 
 
 
35. We choose to work this using Eq. 7-10 (the work-kinetic energy theorem). To find the initial 
and final kinetic energies, we need the speeds, so 
 

v dx
dt

t t= = − +3 0 8 0 3 0 2. . .  

 
in SI units. Thus, the initial speed is vi = 3.0 m/s and the speed at t = 4 s is vf = 19 m/s. The 
change in kinetic energy for the object of mass m = 3.0 kg is therefore 
 

( )2 21 528 J
2 f iK m v v∆ = − =  

 
which we round off to two figures and (using the work-kinetic energy theorem) conclude that the 
work done is  25.3 10 J.W = ×
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37. (a) We first multiply the vertical axis by the mass, so that it becomes a graph of the applied 
force.  Now, adding the triangular and rectangular “areas” in the graph (for 0 ≤ x ≤ 4) gives 42 J 
for the work done. 
 
(b) Counting the “areas” under the axis as negative contributions, we find (for 0 ≤ x ≤ 7) the 
work to be 30 J at x = 7.0 m. 
 
(c) And at x = 9.0 m, the work is 12 J. 
 
(d) Eq. 7-10 (along with Eq. 7-1) leads to speed v = 6.5 m/s at x = 4.0 m.  Returning to the 
original graph (where a was plotted) we note that (since it started from rest) it has received 
acceleration(s) (up to this point) only in the +x direction and consequently must have a velocity 
vector pointing in the +x direction at x = 4.0 m.  
 
(e) Now, using the result of part (b) and Eq. 7-10 (along with Eq. 7-1) we find the speed is 5.5 
m/s at x = 7.0 m.  Although it has experienced some deceleration during the 0 ≤ x ≤ 7 interval, its 
velocity vector still points in the +x direction. 
 
(f) Finally, using the result of part (c) and Eq. 7-10 (along with Eq. 7-1) we find its speed v = 3.5 
m/s at x = 9.0 m.  It certainly has experienced a significant amount of deceleration during the 0 ≤ 
x ≤ 9 interval; nonetheless, its velocity vector still points in the +x direction. 
 
 
39. We solve the problem using the work-kinetic energy theorem which states that the change in 
kinetic energy is equal to the work done by the applied force, K W∆ = . In our problem, the work 
done is W , where F is the tension in the cord and d is the length of the cord pulled as the 
cart slides from x

Fd=
1 to x2. From Fig. 7-40, we have 

 

 
2 2 2 2 2 2 2 2
1 2 (3.00) (1.20) (1.00) (1.20)

3.23 m 1.56 m 1.67 m
d x h x h= + − + = + − +
= − =

 

 
which yields  (25.0 N)(1.67 m) 41.7 J.K Fd∆ = = =
  
40. Recognizing that the force in the cable must equal the total weight (since there is no 
acceleration), we employ Eq. 7-47: 
 

P Fv mg x
t

   cos    = = F
HG
I
KJθ ∆

∆
 

 
where we have used the fact that θ = °0  (both the force of the cable and the elevator’s motion 
are upward). Thus, 
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P  (3.0  10  kg) (9.8 m / s  210 m
23 s

  2.7  10  W.3 2= × F
HG

5I
KJ = ×)  

 
41. The power associated with force F  is given by P F v    = ⋅ ,  where v  is the velocity of the 
object on which the force acts. Thus, 
 

2cos (122 N)(5.0 m/s)cos37 4.9 10  W. P F v Fv φ= ⋅ = = ° = ×  
 
42. (a) Since constant speed implies ∆K  0,=  we require W Wa g= − , by Eq. 7-15. Since W  is 

the same in both cases (same weight and same path), then  J just as it was in the 
first case. 

g

29.0 10aW = ×

 
(b) Since the speed of 1.0 m/s is constant, then 8.0 meters is traveled in 8.0 seconds. Using Eq. 7-
42, and noting that average power is the power when the work is being done at a steady rate, we 
have 
 

2900 J 1.1 10 W.
8.0 s

WP
t

= = = ×
∆

  

 
(c) Since the speed of 2.0 m/s is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq. 7-42, 
with average power replaced by power, we have 
 

900 J
4.0 s

WP
t

= =
∆

= 225 W . 22.3 10  W≈ ×

 
43. (a) The power is given by P = Fv and the work done by F  from time t  to time  is given 
by 

1 t2

 
W P t Fv

t

t

t

t
   d    d= = tzz .

1

2

1

2  

 
Since  is the net force, the magnitude of the acceleration is a = F/m, and, since the initial 
velocity is , the velocity as a function of time is given by 

F
v0 0= v v at F m t= + =0 ( ) .  Thus 

 
2

1

2 2
2 1

1( / )  d ( / )( )
2

t

t
W F m t t F m t t= =∫ 2 2 .−  

 
For  and  t1 0= 2 1.0s,t =
 

2
21 (5.0 N) (1.0 s) = 0.83 J.

2 15 kg
W

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
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(b) For  and  1 1.0s,t = 2 2.0s,t =
 

2
2 21 (5.0 N) [(2.0 s) (1.0 s) ] 2.5 J.

2 15 kg
W

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
=  

 
(c) For  and  1 2.0st = 2 3.0s,t =
 

2
2 21 (5.0 N) [(3.0 s) (2.0 s) ] 4.2 J.

2 15 kg
W

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
=  

 
(d) Substituting v = (F/m)t into P = Fv we obtain P F t m= 2  for the power at any time t. At the 
end of the third second 
 

P  (5.0 N)  (3.0 s)
15 kg

  5.0 W.
2

=
F
HG

I
KJ =  

 
 
49. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. We find 
the area in terms of rectangular [length × width] and triangular [ 1

2 base × height] areas and use 
the work-kinetic energy theorem appropriately. The initial point is taken to be x = 0, where v0 = 
4.0 m/s. 
 
(a) With K mvi = =1

2 0
2 16 J,  we have 

 
3 0 0 1 1 2 2 3 4.0 Jx x xK K W W W< < < < < <− = + + = −  

 
so that K3 (the kinetic energy when x = 3.0 m) is found to equal 12 J. 
 
(b) With SI units understood, we write 3 as ( 4.0)( 3.0)

fx x x fW F x x< < ∆ = − − and apply the work-
kinetic energy theorem: 
 

K K W

K x
x x x

x f f

f f
− =

− = − −
< <3 3

12 4 3 0( )( . )
 

 
so that the requirement  leads to 8.0 JfKx = x f = 4 0.  m.  
 
(c) As long as the work is positive, the kinetic energy grows. The graph shows this situation to 
hold until x = 1.0 m. At that location, the kinetic energy is 
 

1 0 0 1     16 J  2.0 J  18 J.xK K W < <= + = + =  
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50. (a) The compression of the spring is d = 0.12 m. The work done by the force of gravity 
(acting on the block) is, by Eq. 7-12, 
 

W mgd1 0 25 0 29= = =( . . kg) 9.8 m / s  (0.12 m)  J.2c h  
 
(b) The work done by the spring is, by Eq. 7-26, 
 

W kd2
21

2
1
2

250 18= − = − = −  N / m) (0.12 m)  J.2( .  

  
(c) The speed vi of the block just before it hits the spring is found from the work-kinetic energy 
theorem (Eq. 7-15). 
 

∆K mv Wi= − = +0 1
2

2
1 2W  

 
which yields 
 

v W W
mi =

− +
=

− −
=

( )( ) ( )( . . )
.

.2 2 0 29 18
0 25

351 2  m / s.  

 
(d) If we instead had , we reverse the above steps and solve for d . Recalling the 
theorem used in part (c), we have 

' 7 m/siv = ′

 

 2 2
1 2

1 10
2 2imv W W mgd kd′ ′ ′ ′− = + = − ′  

 
which (choosing the positive root) leads to 
 

′ =
+ + ′

d
mg m g mkv

k
i

2 2 2

 

 
which yields d´ = 0.23 m. In order to obtain this result, we have used more digits in our 
intermediate results than are shown above (so vi = =12 048 3 471. .  m / s  and  = 6.942 m/s). '

iv
 
 

54. (a) Eq. 7-10 (along with Eq. 7-1 and Eq. 7-7) leads to vf = (2 dm F cosθ )1/2= (cosθ )1/2, with SI 

units understood. 
 
(b) With vi = 1, those same steps lead to vf = (1 + cosθ )1/2. 
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(c) Replacing θ with 180º – θ, and still using vi = 1, we find  
 

vf = [1 + cos(180º – θ )]1/2 = (1 – cosθ )1/2. 
 
(d) The graphs are shown below.  Note that as θ is increased in parts (a) and (b) the force 
provides less and less of a positive acceleration, whereas in part (c) the force provides less and 
less of a deceleration (as its θ value increases).  The highest curve (which slowly decreases from 
1.4 to 1) is the curve for part (b); the other decreasing curve (starting at 1 and ending at 0) is for 
part (a).  The rising curve is for part (c); it is equal to 1 where  θ = 90º. 
 

 
 
 
57. (a) Noting that the x component of the third force is F3x = (4.00 N)cos(60º), we apply Eq. 7-8 
to the problem:  
 

W = [5.00 – 1.00 + (4.00)cos 60º](0.20 m) = 1.20 J. 
 
(b) Eq. 7-10 (along with Eq. 7-1) then yields v = 2W/m  = 1.10 m/s. 
 
63. There is no acceleration, so the lifting force is equal to the weight of the object. We note that 
the person’s pull  is equal (in magnitude) to the tension in the cord. F
 
(a) As indicated in the hint, tension contributes twice to the lifting of the canister: 2T = mg. Since 
F T= , we find 98 N.F =  

 
(b) To rise 0.020 m, two segments of the cord (see Fig. 7-48) must shorten by that amount. Thus, 
the amount of string pulled down at the left end (this is the magnitude of d , the downward 
displacement of the hand) is d = 0.040 m. 
 
(c) Since (at the left end) both  and F d  are downward, then Eq. 7-7 leads to  

 
(98) (0.040) 3.9 J.W F d= ⋅ = =  
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(d) Since the force of gravity Fg  (with magnitude mg) is opposite to the displacement dc = 0 020.  
m (up) of the canister, Eq. 7-7 leads to  
 

(196) (0.020) 3.9 J.g cW F d= ⋅ = − = −  
 
This is consistent with Eq. 7-15 since there is no change in kinetic energy. 
 
70. (a) To hold the crate at equilibrium in the final situation, F  must have the same magnitude 
as the horizontal component of the rope’s tension T sin θ , where θ  is the angle between the rope 
(in the final position) and vertical: 
 

θ = F
HG
I
KJ = °−sin .

.
. .1 4 00

12 0
19 5  

 
But the vertical component of the tension supports against the weight: T cos θ = mg . Thus, the 
tension is  

T = (230)(9.80)/cos 19.5° = 2391 N 
 
and  F = (2391) sin 19.5° = 797 N. 
 
An alternative approach based on drawing a vector triangle (of forces) in the final situation 
provides a quick solution. 
 
(b) Since there is no change in kinetic energy, the net work on it is zero. 
 
(c) The work done by gravity is W F d mgg g= ⋅ = − h , where h = L(1 – cos θ ) is the vertical 
component of the displacement. With L = 12.0 m, we obtain Wg = –1547 J which should be 
rounded to three figures: –1.55 kJ. 
 
(d) The tension vector is everywhere perpendicular to the direction of motion, so its work is zero 
(since cos 90° = 0). 
 
(e) The implication of the previous three parts is that the work due to F  is –Wg (so the net work 
turns out to be zero). Thus, WF = –Wg = 1.55 kJ. 
 
(f) Since does not have constant magnitude, we cannot expect Eq. 7-8 to apply. F
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