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Halliday/Resnick/Walker 7e  

Chapter 8 
 

 

2. (a) Noting that the vertical displacement is 10.0 – 1.5 = 8.5 m downward (same direction as 
�
Fg ), Eq. 7-12 yields 

 
 W mgd 

g = = ° = cos ( . ) ( . ) ( . ) cos φ 2 00 9 8

0 

8 5 0 167  J .  

 

(b) One approach (which is fairly trivial) is to use Eq. 8-1, but we feel it is instructive to instead 

calculate this as ∆U where U = mgy (with upwards understood to be the +y direction). 
 

∆U mgy mgyf i= − = − = −( . ) ( . ) ( . ) ( . ) ( . ) ( . )2 00 9 8 15 2 00 9 8 10 0 167J.  

 

(c) In part (b) we used the fact that Ui = mgyi =196 J. 

 

(d) In part (b), we also used the fact Uf = mgyf = 29 J. 

 

(e) The computation of Wg does not use the new information (that U = 100 J at the ground), so 

we again obtain Wg = 167 J. 

 

(f) As a result of Eq. 8-1, we must again find ∆U = –Wg = –167 J. 

 

(g) With this new information (that U0 = 100 J where y = 0) we have  

 

Ui = mgyi + U0 = 296 J. 

 

(h) With this new information (that U0 = 100 J where y = 0) we have  

 

Uf = mgyf + U0 = 129 J. 

 

We can check part (f) by subtracting the new Ui from this result. 

 

3. (a) The force of gravity is constant, so the work it does is given by W F d= ⋅
� �

, where 
�
F is the 

force and 
�
d  is the displacement. The force is vertically downward and has magnitude mg, 

where m is the mass of the flake, so this reduces to W = mgh, where h is the height from which 

the flake falls. This is equal to the radius r of the bowl. Thus 

 

W mgr= = × × = ×− − −( . ) ( .2 00 10 22 0 103 2 kg) (9.8 m s m) 4.31 10 J.2 3  

 

(b) The force of gravity is conservative, so the change in gravitational potential energy of the 

flake-Earth system is the negative of the work done: ∆U = –W = –4.31 × 10–3 J. 
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(c) The potential energy when the flake is at the top is greater than when it is at the bottom by 

|∆U|. If U = 0 at the bottom, then U = +4.31 × 10–3 J at the top. 
 

(d) If U = 0 at the top, then U = – 4.31 × 10–3 J at the bottom. 
 

(e) All the answers are proportional to the mass of the flake. If the mass is doubled, all answers 

are doubled. 

 

5. We use Eq. 7-12 for Wg and Eq. 8-9 for U. 

 

(a) The displacement between the initial point and A is horizontal, so φ = 90.0° and 
0gW = (since cos 90.0° = 0). 

 

(b) The displacement between the initial point and B has a vertical component of h/2 downward 

(same direction as 
�
Fg ), so we obtain  

 

 2 51 1
(825 kg)(9.80 m/s )(42.0 m) 1.70 10  J

2 2
g gW F d mgh= ⋅ = = = ×

��
. 

 

(c) The displacement between the initial point and C has a vertical component of h downward 

(same direction as 
�
Fg ), so we obtain  

 
2 5(825 kg)(9.80 m/s )(42.0 m) 3.40 10  Jg gW F d mgh= ⋅ = = = ×

��
. 

 

(d) With the reference position at C, we obtain  

 

2 51 1
(825 kg)(9.80 m/s )(42.0 m) 1.70 10  J

2 2
BU mgh= = = ×  

 

(e) Similarly, we find  

 
2 5(825 kg)(9.80 m/s )(42.0 m) 3.40 10  JAU mgh= = = ×  

 

(f) All the answers are proportional to the mass of the object. If the mass is doubled, all answers 

are doubled. 

 

7. We use Eq. 7-12 for Wg and Eq. 8-9 for U. 

 

(a) The displacement between the initial point and Q has a vertical component of h – R 

downward (same direction as 
�
Fg ), so (with h = 5R) we obtain  

 
2 24 4(3.20 10  kg)(9.80 m/s )(0.12 m) 0.15 Jg gW F d mgR −= ⋅ = = × =

��
. 
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(b) The displacement between the initial point and the top of the loop has a vertical component 

of h – 2R downward (same direction as 
�
Fg ), so (with h = 5R) we obtain  

 
2 23 3(3.20 10  kg)(9.80 m/s )(0.12 m) 0.11 Jg gW F d mgR −= ⋅ = = × =

��
. 

 

(c) With y = h = 5R, at P we find  

 
2 25 5(3.20 10  kg)(9.80 m/s )(0.12 m) 0.19 JU mgR −= = × = . 

 

(d) With y = R, at Q we have 

 
2 2(3.20 10  kg)(9.80 m/s )(0.12 m) 0.038 JU mgR −= = × =  

 

(e) With y = 2R, at the top of the loop, we find 

 
2 22 2(3.20 10  kg)(9.80 m/s )(0.12 m) 0.075 JU mgR −= = × =  

 

(f) The new information ( )vi ≠ 0  is not involved in any of the preceding computations; the 
above results are unchanged. 

 

 

9. (a) If Ki is the kinetic energy of the flake at the edge of the bowl, Kf is its kinetic energy at the 

bottom, Ui is the gravitational potential energy of the flake-Earth system with the flake at the top, 

and Uf is the gravitational potential energy with it at the bottom, then Kf + Uf = Ki + Ui. 

 

Taking the potential energy to be zero at the bottom of the bowl, then the potential energy at the 

top is Ui = mgr where r = 0.220 m is the radius of the bowl and m is the mass of the flake. Ki = 0 

since the flake starts from rest. Since the problem asks for the speed at the bottom, we write 

1

2

2mv  for Kf. Energy conservation leads to 

 

W F d mgh mgLg g= ⋅ = = −
� �

( cos )1 θ  .  

 

The speed is 2 2.08 m/sv gr= = . 
 

 

(b) Since the expression for speed does not contain the mass of the flake, the speed would be the 

same, 2.08 m/s, regardless of the mass of the flake. 

 

(c) The final kinetic energy is given by Kf = Ki + Ui – Uf. Since Ki is greater than before, Kf is 

greater. This means the final speed of the flake is greater. 

 

 

 0 196 29.0fK+ = +  
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11. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects 

friction and other dissipative effects). 

 

(a) In Problem 4, we found UA = mgh (with the reference position at C). Referring again to Fig. 

8-32, we see that this is the same as U0 which implies that KA = K0 and thus that  

 

vA = v0 = 17.0 m/s. 

 

(b) In the solution to Problem 4, we also found U mghB = 2.  In this case, we have 

 

        K U K U

mv mgh mv mg
h

B B

B

0 0

0

2 21

2

1

2 2

+ = +

+ = + FHG
I
KJ
 

 

which leads to  

 

 2 2

0 (17.0) (9.80)(42.0) 26.5 m/s.Bv v gh= + = + =  

 

 

(c) Similarly,. 

 

2 2

0 2 (17.0) 2(9.80)(42.0) 33.4 m/s.Cv v gh= + = + =  

 

(d) To find the “final” height, we set Kf = 0. In this case, we have 

 

         K U K U

mv mgh mgh

f f

f

0 0

0

21

2
0

+ = +

+ = +
 

 

which leads to 
2 2

0

2

(17.0 m/s)
42.0 m 56.7 m.

2 2(9.80 m/s )
f

v
h h

g
= + = + =  

 

(e) It is evident that the above results do not depend on mass. Thus, a different mass for the 

coaster must lead to the same results. 

 

 

13. We neglect any work done by friction. We work with SI units, so the speed is converted: v = 

130(1000/3600) = 36.1 m/s. 

 

(a) We use Eq. 8-17: Kf + Uf = Ki + Ui with Ui = 0, Uf = mgh and Kf = 0. Since K mvi =
1
2

2 , 

where v is the initial speed of the truck, we obtain 
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1

2 2

361

2 9 8
6652

2 2

      mmv mgh h
v

g
= ⇒ = = =

.

( . )
. .  

 

If L is the length of the ramp, then L sin 15° = 66.5 m so that L = 66.5/sin 15° = 257 m. 

Therefore, the ramp must be about 2.6×102 m long if friction is negligible. 
 

(b) The answers do not depend on the mass of the truck. They remain the same if the mass is 

reduced. 

 

(c) If the speed is decreased, h and L both decrease (note that h is proportional to the square of 

the speed and that L is proportional to h). 

 

 

16. We place the reference position for evaluating gravitational potential energy at the relaxed 

position of the spring. We use x for the spring's compression, measured positively downwards 

(so x > 0 means it is compressed). 

 

(a) With x = 0.190 m, Eq. 7-26 gives 21
7.22 J 7.2 J

2
sW kx= − = − ≈ −  for the work done by the 

spring force. Using Newton's third law, we see that the work done on the spring is 7.2 J. 

 

(b) As noted above, Ws = –7.2 J. 

 

(c) Energy conservation leads to 

 

K U K U

mgh mgx kx

i i f f+ = +

= − +0

21

2

 

 

which (with m = 0.70 kg) yields h0 = 0.86 m. 

 

(d) With a new value for the height ′ = =h h0 02 172. m , we solve for a new value of x using the 

quadratic formula (taking its positive root so that x > 0). 

 

mgh mgx kx x
mg mg mgkh

k
′ = − + ⇒ =

+ + ′
0

2

2

01

2

2b g
 

 

which yields x = 0.26 m. 

 

17. We take the reference point for gravitational potential energy at the position of the marble 

when the spring is compressed. 

 

(a) The gravitational potential energy when the marble is at the top of its motion is gU mgh= , 

where h = 20 m is the height of the highest point. Thus, 
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U g = × =−50 10 9 8 0 983 2
. . . . kg m s 20 m  Jc hd ib g  

 

(b) Since the kinetic energy is zero at the release point and at the highest point, then conservation 

of mechanical energy implies ∆Ug + ∆Us = 0, where ∆Us is the change in the spring's elastic 
potential energy. Therefore, ∆Us = –∆Ug = –0.98 J. 
 

(c) We take the spring potential energy to be zero when the spring is relaxed. Then, our result in 

the previous part implies that its initial potential energy is Us = 0.98 J. This must be 
1
2

2kx , where 

k is the spring constant and x is the initial compression. Consequently, 

 

k
U

x

s= = = × =
2 2 0 98

0 080
31 10 31

2 2

2( . )

( . )
. .

 J

 m
 N m  N cm.  

 

21. (a) At Q the block (which is in circular motion at that point) experiences a centripetal 

acceleration v
2
/R leftward. We find v

2
 from energy conservation: 

 

K U K U

mgh mv mgR

P P Q Q+ = +

+ = +0
1

2

2
 

 

Using the fact that h = 5R, we find mv
2
 = 8mgR. Thus, the horizontal component of the net force 

on the block at Q is  

 

F = mv
2
/R = 8mg=8(0.032 kg)(9.8 m/s

2
)= 2.5 N. 

 

and points left (in the same direction as 
�
a ). 

 

(b) The downward component of the net force on the block at Q is the downward force of gravity  

 

F = mg =(0.032 kg)(9.8 m/s
2
)= 0.31 N. 

 

(c) To barely make the top of the loop, the centripetal force there must equal the force of gravity: 

 

mv

R
mg mv mgRt

t

2
2= ⇒ =   

 

This requires a different value of h than was used above. 
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21
0

2

1
( ) (2 )
2

P P t t

t t

K U K U

mgh mv mgh

mgh mgR mg R

+ = +

+ = +

= +

 

 

Consequently, h = 2.5R = (2.5)(0.12 m) = 0.3 m. 

 

(d) The normal force FN, for speeds vt greater than gR  (which are the only possibilities for 

non-zero FN — see the solution in the previous part), obeys 

 

 
2

t
N

mv
F mg

R
= −  

 

from Newton's second law. Since 2

tv  is related to h by energy conservation 

 

K U K U gh v gRP P t t t+ = + ⇒ = + 
1

2
22  

 

then the normal force, as a function for h (so long as h ≥ 2.5R — see solution in previous part), 
becomes 

 

 
2

5N

mgh
F mg

R
= −  

 

Thus, the graph for h ≥ 2.5R consists of a straight line of positive slope 2mg/R (which can be set 
to some convenient values for graphing purposes).  

 

 
 

Note that for h ≤ 2.5R, the normal force is zero.  
 

22. (a) To find out whether or not the vine breaks, it is sufficient to examine it at the moment 

Tarzan swings through the lowest point, which is when the vine — if it didn't break — would 

have the greatest tension. Choosing upward positive, Newton's second law leads to 
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T mg m
v

r
− =

2

 

 

where r = 18.0 m and m W g= = =688 9 8 70 2. . kg . We find the v
2
 from energy conservation 

(where the reference position for the potential energy is at the lowest point). 

 

mgh mv v gh  
1

2
    2= ⇒ =2 2  

 

where h = 3.20 m. Combining these results, we have 

 

T mg m
gh

r
mg

h

r
= + = +FHG

I
KJ

2
1
2

 

 

which yields 933 N. Thus, the vine does not break.  

 

(b) Rounding to an appropriate number of significant figures, we see the maximum tension is 

roughly 9.3×102 N. 
 

 

25. From Chapter 4, we know the height h of the skier's jump can be found from 

v v ghy y

2

0

20 2= = −  where v0 y = v0 sin 28° is the upward component of the skier's “launch 

velocity.” To find v0 we use energy conservation. 

 

(a) The skier starts at rest y = 20 m above the point of “launch” so energy conservation leads to 

 

mgy mv v gy= ⇒ = =
1

2
m s2 2 20  

 

which becomes the initial speed v0 for the launch. Hence, the above equation relating h to v0 

yields 

 

h
v

g
=

°
=0

2

sin 28
4.4 m

2b g
.  

 

(b) We see that all reference to mass cancels from the above computations, so a new value for 

the mass will yield the same result as before. 

 

 

29. We refer to its starting point as A, the point where it first comes into contact with the spring 

as B, and the point where the spring is compressed |x| = 0.055 m as C. Point C is our reference 

point for computing gravitational potential energy. Elastic potential energy (of the spring) is zero 
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when the spring is relaxed. Information given in the second sentence allows us to compute the 

spring constant. From Hooke's law, we find 

 

k
F

x
= = = ×

270 N

0.02 m
1.35 10 N m4 .  

 

(a) The distance between points A and B is 
�
Fg  and we note that the total sliding distance � + x  

is related to the initial height h of the block (measured relative to C) by 

 

h

x�+
= sin θ  

 

where the incline angle θ is 30°. Mechanical energy conservation leads to 
 

K U K U

mgh kx

A A C C+ = +

+ = + 0
1

2
0 2

 

 

which yields 

 

h
kx

mg
= =

×
=

2
2

22 2 12 9 8

1.35 10 N m 0.055 m

kg m s
0.174 m

4c hb g
b g c h.

.  

 

Therefore, 

 

� + =
°
=

°
=x

h

sin30

0.174 m

sin30
0.35 m .  

 

(b) From this result, we find � = − =0.35 0.055 0.29 m , which means that 

∆y = − = −� sin mθ 015.  in sliding from point A to point B. Thus, Eq. 8-18 gives 

 
        0

1

2
0

∆ ∆

∆

K U

mv mg hB

+ =

+ =2
 

 

which yields v g hB = − = − − =2 9 8 015∆ . . .b gb g 1.7 m s  
 

33. From the slope of the graph, we find the spring constant 

 

k
F

x
= = =
∆
∆

010 10. .N cm N m  
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(a) Equating the potential energy of the compressed spring to the kinetic energy of the cork at the 

moment of release, we have 

 

1

2

1

2

2 2kx mv v x
k

m
= ⇒ =  

 

which yields v = 2.8 m/s for m = 0.0038 kg and x = 0.055 m. 

 

(b) The new scenario involves some potential energy at the moment of release. With d = 0.015 m, 

energy conservation becomes 

 

1

2

1

2

1

2

2 2 2 2 2kx mv kd v
k

m
x d= + ⇒ = −c h  

 

which yields v = 2.7 m/s. 

 

 

37. From Fig. 8-48, we see that at x = 4.5 m, the potential energy is U1 = 15 J. If the speed is v = 

7.0 m/s, then the kinetic energy is K1=mv
2
/2 = (0.90 kg)(7.0 m/s)

2
/2 = 22 J. The total energy is E1 

= U 1+ K1 = (15 + 22) = 37 J. 

 

(a) At x = 1.0 m, the potential energy is U2 = 35 J. From energy conservation, we have K2=2.0 J 

> 0. This means that the particle can reach there with a corresponding speed  

 

 2
2

2 2(2.0 J)
2.1 m/s.

0.90 kg

K
v

m
= = =  

 

(b) The force acting on the particle is related to the potential energy by the negative of the slope:  

 

 x

U
F

x

∆
= −

∆
 

 

From the figure we have
35 15

10 N
2 4

xF
−

= − = +
−

. 

 

(c) Since the magnitude 0xF > , the force points in the +x direction. 

 

(d) At x = 7.0m, the potential energy is U3 = 45 J which exceeds the initial total energy E1. Thus, 

the particle can never reach there. At the turning point, the kinetic energy is zero. Between x = 5 

and 6 m, the potential energy is given by 

 

 ( ) 15 30( 5),     5 6.U x x x= + − ≤ ≤  
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Thus, the turning point is found by solving 37 15 30( 5)x= + − , which yields x = 5.7 m.  

 

(e) At x =5.0 m, the force acting on the particle is  

 

(45 15) J
30 N

(6 5) m
x

U
F

x

∆ −
= − = − = −

∆ −
 

 

The magnitude is | | 30 NxF = . 

 

(f) The fact that 0xF < indicated that the force points in the –x direction. 

 

42. (a) The work is W = Fd = (35 N)(3 m) = 105 J. 

 

(b) The total amount of energy that has gone to thermal forms is (see Eq. 8-31 and Eq. 6-2)  

 
∆Eth = µk mgd = (0.6)(4 kg)(9.8 m/s2)(3 m) = 70.6 J. 

 

If 40 J has gone to the block then (70.6 – 40) J = 30.6 J has gone to the floor. 

 

(c) Much of the work (105 J ) has been “wasted” due to the 70.6 J of thermal energy generated, 

but there still remains (105 – 70.6 ) J = 34.4 J which has gone into increasing the kinetic energy 

of the block.  (It has not gone into increasing the potential energy of the block because the floor 

is presumed to be horizontal.) 

 

43. (a) The work done on the block by the force in the rope is, using Eq. 7-7, 

 

cos (7.68N)(4.06m)cos15.0 30.1J.W Fd θ= = ° =  

 

(b) Using f for the magnitude of the kinetic friction force, Eq. 8-29 reveals that the increase in 

thermal energy is 

 

th (7.42N)(4.06m) 30.1J.E fd∆ = = =  

 

(c) We can use Newton's second law of motion to obtain the frictional and normal forces, then 

use µk = f/FN to obtain the coefficient of friction. Place the x axis along the path of the block and 
the y axis normal to the floor. The x and the y component of Newton's second law are  

 

  x:      F cos θ – f  = 0 
 y:  FN + F sin θ – mg = 0, 

 

where m is the mass of the block, F is the force exerted by the rope, and θ is the angle between 
that force and the horizontal. The first equation gives  

 

f = F cos θ = (7.68) cos15.0° = 7.42 N 
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and the second gives  

 

FN = mg – F sin θ = (3.57)(9.8) – (7.68) sin15.0°= 33.0 N. 
 

Thus 

 

 
7.42 N

0.225
33.0 N

k

N

f

F
µ = = = . 

 

44. Equation 8-33 provides ∆Eth = –∆Emec for the energy “lost” in the sense of this problem. 
Thus, 

 

 
2 2 2 2

th

4

1 1
( ) ( ) (60)(24 22 ) (60)(9.8)(14)

2 2
1.1 10  J.

i f i fE m v v mg y y∆ = − + − = − +

= ×
 

 

That the angle of 25° is nowhere used in this calculation is indicative of the fact that energy is a 

scalar quantity. 

 

45. (a) We take the initial gravitational potential energy to be Ui = 0. Then the final gravitational 

potential energy is Uf = –mgL, where L is the length of the tree. The change is 

 

U U mgLf i− = − = − = − ×( ( .25 12 2 9 103 kg) 9.8 m s  m)  J .
2d i  

 

(b) The kinetic energy is 2 2 21 1
(25 kg)(5.6 m/s) =3.9 10  J

2 2
K mv= = × . 

 

(c) The changes in the mechanical and thermal energies must sum to zero. The change in thermal 

energy is ∆Eth = fL, where f is the magnitude of the average frictional force; therefore, 
 

 
2 3

23.9 10  J 2.9 10  J
2.1 10  N

12 m

K U
f

L

∆ + ∆ × − ×
= − = − = ×  

 

48. (a) The initial potential energy is 

 

U mgyi i= = = ×(520 1 kg) 9.8m s  (300 m) .53 10  J
2 6d i  

 

where +y is upward and y = 0 at the bottom (so that Uf = 0). 

 

(b) Since fk = µk FN = µk mg cosθ we have th cosk kE f d mgdµ θ∆ = =  from Eq. 8-31. Now, the 

hillside surface (of length d = 500 m) is treated as an hypotenuse of a 3-4-5 triangle, so cos θ = 
x/d where x = 400 m. Therefore, 
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∆E mgd
x

d
mgxk kth  J .= = = = ×µ µ ( . ) ( ) ( . ) ( ) .0 25 520 9 8 400 51 105  

 

(c) Using Eq. 8-31 (with W = 0) we find 

 

K K U U Ef i i f= + − −

= + × − − ×

= + ×

∆ th

J

0 153 10 0 51 10

0 102 10

6 5

6

. .

. .

 

 

(d) From K mvf =
1

2

2  we obtain v = 63 m/s. 

 

49. We use Eq. 8-31  

 

th (10N)(5.0m) 50J.kE f d∆ = = =  

 

and Eq. 7-8  

 

(2.0N)(5.0m) 10J.W Fd= = =  

 

and Eq. 8-31 

 

W K U E

U

= + +

= + +

∆ ∆ ∆

∆
th

10 35 50
 

 

which yields ∆U = –75 J. By Eq. 8-1, then, the work done by gravity is W = –∆U = 75 J. 
 

50. Since the valley is frictionless, the only reason for the speed being less when it reaches the 

higher level is the gain in potential energy ∆U = mgh where h = 1.1 m. Sliding along the rough 
surface of the higher level, the block finally stops since its remaining kinetic energy has turned to 

thermal energy∆E f d mgdkth = = µ , where 0.60µ = . Thus, Eq. 8-33 (with W = 0) provides us 

with an equation to solve for the distance d: 

 

K U E mg h di = + = +∆ ∆ th µb g  
 

where K mvi i=
1

2

2  and vi = 6.0 m/s. Dividing by mass and rearranging, we obtain 

 

d
v

g

hi= − =
2

2
12

µ µ
. m.  
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51. (a) The vertical forces acting on the block are the normal force, upward, and the force of 

gravity, downward. Since the vertical component of the block's acceleration is zero, Newton's 

second law requires FN = mg, where m is the mass of the block. Thus f = µk FN = µk mg. The 
increase in thermal energy is given by ∆Eth = fd = µk mgD, where D is the distance the block 
moves before coming to rest. Using Eq. 8-29, we have 

 

∆Eth kg m s m J= =0 25 35 9 8 7 8 67
2

. . . . .b gb gd ib g  

 

(b) The block has its maximum kinetic energy Kmax just as it leaves the spring and enters the 

region where friction acts. Therefore, the maximum kinetic energy equals the thermal energy 

generated in bringing the block back to rest, 67 J. 

 

(c) The energy that appears as kinetic energy is originally in the form of potential energy in the 

compressed spring. Thus, K U kximax = =
1

2

2 , where k is the spring constant and x is the 

compression. Thus, 

 

x
K

k
= = =
2 2 67

640
0 46max . .

J

N m
m

b g
 

 

54. We look for the distance along the incline d which is related to the height ascended by ∆h = d 
sin θ. By a force analysis of the style done in Ch. 6, we find the normal force has magnitude FN = 
mg cos θ which means fk = µk mg cosθ. Thus, Eq. 8-33 (with W = 0) leads to 
 

0

0

= − + +

= − + +

K K U E

K mgd mgd

f i

i k

∆ ∆ th

sin cosθ µ θ
 

 

which leads to 

 

d
K

mg

i

k

=
+

=
°+ °

=
sin cos . . sin . cos

. .
θ µ θb g b gb gb g

128

4 0 9 8 30 0 30 30
4 3m  

 

55. (a) Using the force analysis shown in Chapter 6, we find the normal force cosNF mg θ=  

(where mg = 267 N) which means fk = k NFµ =µk mg cos θ. Thus, Eq. 8-31 yields 
 

∆E f d mgdk kth J= = = °= ×µ θcos . . cos . .010 267 61 20 15 102b gb gb g  

 

(a) The potential energy change is  

 

∆U = mg(–d sin θ) = (267)(–6.1 sin 20°) = –5.6 × 102 J. 
 

The initial kinetic energy is 
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2 2

2

1 1 267N
(0.457m/s ) 2.8J.

2 2 9.8m/s
i iK mv

 
= = = 

 
 

 

Therefore, using Eq. 8-33 (with W = 0), the final kinetic energy is 

 

K K U Ef i= − − = − − × − × = ×∆ ∆ th J2 8 56 10 15 10 41 102 2 2. . . . .c h  

 

Consequently, the final speed is v K mf f= =2 55.  m s . 

 

57. (a) With x = 0.075 m and k = 320N m,  Eq. 7-26 yields W kxs = − = −1
2

2 0 90.  J.  For later 

reference, this is equal to the negative of ∆U. 
 

(b) Analyzing forces, we find FN = mg which means k k N kf F mgµ µ= = . With d = x, Eq. 8-31 

yields∆E f d mgxk kth  J= = = =µ ( . ) ( . ) ( . ) ( . ) . .0 25 2 5 9 8 0 075 0 46  

 

(c) Eq. 8-33 (with W = 0) indicates that the initial kinetic energy is 

 

K U Ei = + = + =∆ ∆ th  J0 90 0 46 136. . .  

 

which leads to v K mi i= =2 10.  m s.  

 

58. (a) The maximum height reached is h. The thermal energy generated by air resistance as the 

stone rises to this height is ∆Eth = fh by Eq. 8-31. We use energy conservation in the form of Eq. 
8-33 (with W = 0): 

 

K U E K Uf f i i+ + = +∆ th  

 

and we take the potential energy to be zero at the throwing point (ground level). The initial 

kinetic energy is K mvi =
1

2
0

2 , the initial potential energy is Ui = 0, the final kinetic energy is Kf = 

0, and the final potential energy is Uf = wh, where w = mg is the weight of the stone. 

Thus,wh fh mv+ =
1

2
0

2 , and we solve for the height: 

2 2

0 0

2( ) 2 (1 / )

mv v
h

w f g f w
= =

+ +
. 

 

Numerically, we have, with m = (5.29 N)/(9.80 m/s
2
)=0.54 kg,  

 

 
2

2

(20.0 m/s)
19.4 m/s

2(9.80 m/s )(1+0.265/5.29)
h = = . 
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(b) We notice that the force of the air is downward on the trip up and upward on the trip down, 

since it is opposite to the direction of motion. Over the entire trip the increase in thermal energy 

is ∆Eth = 2fh. The final kinetic energy is K mvf =
1

2

2 , where v is the speed of the stone just 

before it hits the ground. The final potential energy is Uf = 0. Thus, using Eq. 8-31 (with W = 0), 

we find 

 

1

2
2

1

2

2

0

2mv fh mv+ = .  

 

We substitute the expression found for h to obtain 

 
2

2 20
0

2 1 1

2 (1 / ) 2 2

fv
mv mv

g f w
= −

+
 

 

which leads to 

 
2 2

2 2 2 2 20 0
0 0 0 0

2 2 2
1

(1 / ) (1 / )

fv fv f w f
v v v v v

mg f w w f w w f w f

  −
= − = − = − = + + + + 

 

 

where w was substituted for mg and some algebraic manipulations were carried out. Therefore, 

 

0

5.29 0.265
(20.0 m/s) 19.0 m/s

5.29+0.265

w f
v v

w f

− −
= = =

+
. 

 

65. (a) The assumption is that the slope of the bottom of the slide is horizontal, like the ground. 

A useful analogy is that of the pendulum of length R = 12 m that is pulled leftward to an angle θ 
(corresponding to being at the top of the slide at height h = 4.0 m) and released so that the 

pendulum swings to the lowest point (zero height) gaining speed v = 6 2. .m s  Exactly as we 

would analyze the trigonometric relations in the pendulum problem, we find 

 

h R
h

R
= − ⇒ = −FHG

I
KJ = °−1 1 481cos cosθ θb g  

 

or 0.84 radians. The slide, representing a circular arc of length s = Rθ, is therefore (12)(0.84) = 
10 m long. 

 

(b) To find the magnitude f of the frictional force, we use Eq. 8-31 (with W = 0): 

 

0

1

2

2

= + +

= − +

∆ ∆ ∆K U E

mv mgh fs

th
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so that (with m = 25 kg) we obtain f = 49 N. 

 

(c) The assumption is no longer that the slope of the bottom of the slide is horizontal, but rather 

that the slope of the top of the slide is vertical (and 12 m to the left of the center of curvature). 

Returning to the pendulum analogy, this corresponds to releasing the pendulum from horizontal 

(at θ1 = 90° measured from vertical) and taking a snapshot of its motion a few moments later 
when it is at angle θ2 with speed v = 6.2 m/s. The difference in height between these two 
positions is (just as we would figure for the pendulum of length R) 

 

∆h R R R= − − − = −1 12 1 2cos cos cosθ θ θb g b g  

 

where we have used the fact that cos θ1 = 0. Thus, with ∆h = –4.0 m, we obtain θ2 =70.5° which 
means the arc subtends an angle of |∆θ| = 19.5° or 0.34 radians. Multiplying this by the radius 
gives a slide length of s' = 4.1 m. 

 

(d) We again find the magnitude f ' of the frictional force by using Eq. 8-31 (with W = 0): 

 

0

1

2

2

= + +

= − + ′ ′

∆ ∆ ∆K U E

mv mgh f s

th

 

 

so that we obtain f ' = 1.2 × 102 N. 
 

 

89. We note that if the larger mass (block B, mB = 2 kg) falls d = 0.25 m, then the smaller mass 

(blocks A, mA = 1 kg) must increase its height by sin 30h d= ° . Thus, by mechanical energy 
conservation, the kinetic energy of the system is 

 

 total 3.7 JB AK m gd m gh= − = . 

 

105. Since the speed is constant ∆K = 0 and Eq. 8-33 (an application of the energy conservation 
concept) implies 

 

W E E Eapplied th th cube th floor
= = +∆ ∆ ∆b g b g .  

 

Thus, if Wapplied = (15)(3.0) = 45 J, and we are told that ∆Eth (cube) = 20 J, then we conclude that 
∆Eth (floor) = 25 J. 
 

107. To swim at constant velocity the swimmer must push back against the water with a force of 

110 N. Relative to him the water is going at 0.22 m/s toward his rear, in the same direction as his 

force. Using Eq. 7-48, his power output is obtained: 

 

P F v Fv= ⋅ = = =
� �

110 0 22 24N m s W.b gb g.  
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112. (a) The (internal) energy the climber must convert to gravitational potential energy 

is∆U mgh= = = ×90 9 8 8850 7 8 106b gb gb g. . J .  

 

(b) The number of candy bars this corresponds to is 

 
6

6

7.8 10 J
6.2bars .

1.25 10 J bar
N

×
= ≈

×
 

 

 

119. (a) When there is no change in potential energy, Eq. 8-24 leads to 

 

W K m v vapp = = −∆
1

2

2

0

2c h .  
 

Therefore, ∆E = ×6 0 103. J . 

 

(b) From the above manipulation, we see Wapp = 6.0 × 10
3
 J. Also, from Chapter 2, we know that 

∆ ∆t v a= = 10 s. Thus, using Eq. 7-42, 
 

P
W

t
avg W .= =

×
=

∆
6 0 10

10
600

3.
 

 

(c) and (d) The constant applied force is ma = 30 N and clearly in the direction of motion, so Eq. 

7-48 provides the results for instantaneous power 

 

P F v
v

v
= ⋅ =

=

=
RST

� � 300 10

900 30

W for m s

W for m s
 

 

We note that the average of these two values agrees with the result in part (b). 

 

121. We want to convert (at least in theory) the water that falls through h = 500 m into electrical 

energy. The problem indicates that in one year, a volume of water equal to A∆z lands in the form 
of rain on the country, where A = 8 × 1012 m2 and ∆z = 0.75 m. Multiplying this volume by the 
density ρ = 1000 kg/m3 leads to 
 

m A ztotal kg= = × = ×ρ ∆ 1000 8 10 0 75 6 1012 15b gc hb g.  

 

for the mass of rainwater. One-third of this “falls” to the ocean, so it is m = 2 × 1015 kg that we 
want to use in computing the gravitational potential energy mgh (which will turn into electrical 

energy during the year). Since a year is equivalent to 3.2 × 107 s, we obtain 
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Pavg W.=
×

×
= ×

2 10 9 8 500

32 10
31 10

15

7

11
c hb gb g.

.
.  

 

 

128. Eq. 8-8 leads directly to ∆y = 
68000 J

(9.4 kg)(9.8 m/s
2
)
  = 738 m. 

 


