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Halliday/Resnick/Walker 7e  
Chapter 14 
 
1. The air inside pushes outward with a force given by piA, where pi is the pressure inside the 
room and A is the area of the window. Similarly, the air on the outside pushes inward with a 
force given by poA, where po is the pressure outside. The magnitude of the net force is F = (pi – 
po)A. Since 1 atm = 1.013 × 105 Pa, 
 

5 4(1.0 atm 0.96 atm)(1.013 10  Pa/atm)(3.4 m)(2.1 m) = 2.9 10  N.F = − × ×  
 
3. The pressure increase is the applied force divided by the area: ∆p = F/A = F/πr2, where r is the 
radius of the piston. Thus  
 

∆p = (42 N)/π(0.011 m)2 = 1.1 × 105 Pa. 
 
This is equivalent to 1.1 atm. 
 
5. Let the volume of the expanded air sacs be Va and that of the fish with its air sacs collapsed be 
V. Then 
 

3 3fish fish
fish 1.08 g/cm     and     1.00 g/cmw

a

m m
V V V

ρ ρ= = = =
+

 

 
where ρw is the density of the water. This implies  
 

ρfishV = ρw(V + Va) or (V + Va)/V = 1.08/1.00, 
 
which gives Va/(V + Va) = 7.4%. 
 
7. (a) The pressure difference results in forces applied as shown in the figure. We consider a 
team of horses pulling to the right. To pull the sphere apart, the team must exert a force at least 
as great as the horizontal component of the total force determined by “summing” (actually, 
integrating) these force vectors. 
 
We consider a force vector at angle θ. Its leftward component is ∆p cos θdA, where dA is the 
area element for where the force is applied. We make use of the symmetry of the problem and let 
dA be that of a ring of constant θ on the surface. The radius of the ring is r = R sin θ, where R is 
the radius of the sphere. If the angular width of the ring is dθ, in radians, then its width is R dθ 
and its area is dA = 2πR2 sin θ dθ. Thus the net horizontal component of the force of the air is 
given by 
 

22 2 2
00

2  sin  cos  sinhF R p d R p R pππ θ θ θ π θ π
π

= ∆ = ∆ = ∆∫ / 2 2 .  

 
(b) We use 1 atm = 1.01 × 105 Pa to show that ∆p = 0.90 atm = 9.09 × 104 Pa. The sphere radius 
is R = 0.30 m, so  
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Fh = π(0.30 m)2(9.09 × 104 Pa) = 2.6 × 104 N. 

 
(c) One team of horses could be used if one half of the sphere is attached to a sturdy wall. The 
force of the wall on the sphere would balance the force of the horses. 
 
8. Note that 0.05 atm equals 5065 N/m2.  Application of Eq. 14-7 with the notation in this 
problem leads to 
 

dmax = 
5065

 ρliquid g
  

 
with SI units understood.  Thus the difference of this quantity between fresh water (998 kg/m3) 
and Dead Sea water (1500 kg/m3) is 
 

∆dmax = 
5065
9.8 ⎝⎜

⎛
⎠⎟
⎞1

998 - 
1

1500    = 0.17 m . 

 
10. Recalling that 1 atm = 1.01 × 105 Pa, Eq. 14-8 leads to 
 

3 2 3 3
5

1 atm(1024 kg/m ) (9.80 m/s ) (10.9 10 m) 1.08 10 atm.
1.01 10 Pa

ghρ ⎛ ⎞= × ≈⎜ ⎟×⎝ ⎠
×  

 
11. The pressure p at the depth d of the hatch cover is p0 + ρgd, where ρ is the density of ocean 
water and p0 is atmospheric pressure. The downward force of the water on the hatch cover is (p0 
+ ρgd)A, where A is the area of the cover. If the air in the submarine is at atmospheric pressure 
then it exerts an upward force of p0A. The minimum force that must be applied by the crew to 
open the cover has magnitude  
 

F = (p0 + ρgd)A – p0A = ρgdA = (1024 kg/m3)(9.8 m/s2)(100 m)(1.2 m)(0.60 m) 
            = 7.2 × 105 N. 
 
12. In this case, Bernoulli’s equation reduces to Eq. 14-10. Thus, 
 

3 2 4( ) (1800kg/m )(9.8 m/s ) (1.5 m) 2.6 10 Pa .gp g hρ= − = − = − ×  
 
17. We can integrate the pressure (which varies linearly with depth according to Eq. 14-7) over 
the area of the wall to find out the net force on it, and the result turns out fairly intuitive (because 
of that linear dependence): the force is the “average” water pressure multiplied by the area of the 
wall (or at least the part of the wall that is exposed to the water), where “average” pressure is 
taken to mean 12 (pressure at surface + pressure at bottom).  Assuming the pressure at the surface 
can be taken to be zero (in the gauge pressure sense explained in section 14-4), then this means 
the force on the wall is 12 ρgh  multiplied by the appropriate area.  In this problem the area is hw 

(where w is the 8.00 m width), so the force is 12 ρgh2w, and the change in force (as h is changed) 
is 
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1
2 ρgw ( hf 

2 – hi 
2 )  =  12 (998 kg/m3)(9.80 m/s2)(8.00 m)(4.002 – 2.002)m2  = 4.69 × 105 N. 

 
20. The gauge pressure you can produce is 
 

( ) ( ) ( )3 2 2
3

5

1000 kg m 9.8m s 4.0 10 m
3.9 10 atm

1.01 10 Pa atm
p ghρ

−
−

×
= − = − = − ×

×
 

 
where the minus sign indicates that the pressure inside your lung is less than the outside pressure. 
 
22. (a) According to Pascal’s principle F/A = f/a → F = (A/a)f. 
 
(b) We obtain 
 

2
3

2

(3.80 cm) (20.0 10 N) = 103 N.
(53.0 cm)

af F
A

= = ×  

 
The ratio of the squares of diameters is equivalent to the ratio of the areas. We also note that the 
area units cancel. 
 
25. (a) The anchor is completely submerged in water of density ρw. Its effective weight is Weff = 
W – ρw gV, where W is its actual weight (mg). Thus, 
 

( ) ( )
2 3eff

3 2

200 N 2.04 10 m .
1000 kg/m 9.8 m/sw

W WV
gρ

−−
= = = ×  

 
(b) The mass of the anchor is m = ρV, where ρ is the density of iron (found in Table  
14-1). Its weight in air is 
 

( ) ( )3 2 3 27870 kg/m (2.04 10 m ) 9.80 m/s 1.57 10 N .W mg Vgρ −= = = × = × 3  
 
26. (a) The pressure (including the contribution from the atmosphere) at a depth of htop = L/2 
(corresponding to the top of the block) is 
 

5 5
top atm top 1.01 10 (1030) (9.8) (0.300) Pa 1.04 10 Pap p ghρ ⎡ ⎤= + = × + = ×⎣ ⎦  

 
where the unit Pa (Pascal) is equivalent to N/m2. The force on the top surface (of area A = L2 = 
0.36 m2) is Ftop = ptop A = 3.75 × 104 N. 
 
(b) The pressure at a depth of hbot = 3L/2 (that of the bottom of the block) is 
 

5 5
bot atm bot 1.01 10 (1030) (9.8) (0.900) Pa 1.10 10 Pap p ghρ ⎡ ⎤= + = × + = ×⎣ ⎦  
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3

where we recall that the unit Pa (Pascal) is equivalent to N/m2. The force on the bottom surface 
is Fbot = pbot A = 3.96 × 104 N. 
 
(c) Taking the difference Fbot – Ftop cancels the contribution from the atmosphere (including any 
numerical uncertainties associated with that value) and leads to 
 

3 3
bot top bot top( ) 2.18 10 NF F g h h A gLρ ρ− = − = = ×  

 
which is to be expected on the basis of Archimedes’ principle. Two other forces act on the block: 
an upward tension T and a downward pull of gravity mg. To remain stationary, the tension must 
be 
 

2 3
bot top( ) (450 kg) (9.80 m/s ) 2.18 10  N 2.23 10 N.T mg F F= − − = − × = ×  

 
(d) This has already been noted in the previous part: , and T + F32.18 10 NbF = × b = mg. 
 
29. (a) Let V be the volume of the block. Then, the submerged volume is Vs = 2V/3. Since the 
block is floating, the weight of the displaced water is equal to the weight of the block, so ρw Vs = 
ρb V, where ρw is the density of water, and ρb is the density of the block. We substitute Vs = 2V/3 
to obtain  
 

ρb = 2ρw/3 = 2(1000 kg/m3)/3 ≈ 6.7 ×102 kg/m3. 
 
(b) If ρo is the density of the oil, then Archimedes’ principle yields ρo Vs = ρbV. We substitute Vs 
= 0.90V to obtain ρo = ρb/0.90 = 7.4 ×102 kg/m3. 
 
35. The volume Vcav of the cavities is the difference between the volume Vcast of the casting as a 
whole and the volume Viron contained: Vcav = Vcast – Viron. The volume of the iron is given by Viron 
= W/gρiron, where W is the weight of the casting and ρiron is the density of iron. The effective 
weight in water (of density ρw) is Weff = W – gρw Vcast. Thus, Vcast = (W – Weff)/gρw and 
 

ff
cav 2 3 2 3

iron

3

6000 N 4000 N 6000 N
(9.8 m/s ) (1000 kg/m ) (9.8 m/s ) (7.87 10 kg/m )

0.126 m .

e

w

W W WV
g gρ ρ
−

3

−
= − = −

×

=

 

 
41. We use the equation of continuity. Let v1 be the speed of the water in the hose and v2 be its 
speed as it leaves one of the holes. A1 = πR2 is the cross-sectional area of the hose. If there are N 
holes and A2 is the area of a single hole, then the equation of continuity becomes 
 

( )
2

1
1 1 2 2 2 1 12

2

A Rv A v NA v v v
NA Nr

= ⇒ = =  

 
where R is the radius of the hose and r is the radius of a hole. Noting that R/r = D/d (the ratio of 
diameters) we find 
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( )
( )

( )
22

2 1 22

1.9cm
0.91m s 8.1m s.

24 0.13cm
Dv v

Nd
= = =  

 
42. We use the equation of continuity and denote the depth of the river as h. Then, 
 

( )( )( ) ( )( )( ) ( )( )8.2m 3.4m 2.3m s 6.8m 3.2m 2.6m s 10.5m 2.9m sh+ =  
 
which leads to h = 4.0 m. 
 
43. Suppose that a mass ∆m of water is pumped in time ∆t. The pump increases the potential 
energy of the water by ∆mgh, where h is the vertical distance through which it is lifted, and 
increases its kinetic energy by 21

2 mv∆ , where v is its final speed. The work it does is 
21

2W mgh mv∆ = ∆ + ∆  and its power is 
 

21 .
2

W mP gh
t t

∆ ∆ ⎛ ⎞= = +⎜ ⎟∆ ∆ ⎝ ⎠
v  

 
Now the rate of mass flow is ∆m/ ∆t = ρwAv, where ρw is the density of water and A is the area of 
the hose. The area of the hose is A = πr2 = π(0.010 m)2 = 3.14 × 10–4 m2 and  
 

ρwAv = (1000 kg/m3) (3.14 × 10–4 m2) (5.00 m/s) = 1.57 kg/s. 
 
Thus, 
 

( ) ( )( ) ( )2
2 2 5.0m s1 1.57 kg s 9.8m s 3.0m 66 W.

2 2
P Av gh vρ

⎛ ⎞⎛ ⎞ ⎜ ⎟= + = + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
45. (a) We use the equation of continuity: A1v1 = A2v2. Here A1 is the area of the pipe at the top 
and v1 is the speed of the water there; A2 is the area of the pipe at the bottom and v2 is the speed 
of the water there. Thus  
 

v2 = (A1/A2)v1 = [(4.0 cm2)/(8.0 cm2)] (5.0 m/s) = 2.5m/s. 
 
(b) We use the Bernoulli equation: 21 1

1 1 1 2 22 2p v gh p v ghρ ρ ρ ρ+ + = + +2
2 , where ρ is the density 

of water, h1 is its initial altitude, and h2 is its final altitude. Thus 
 

( ) ( )2 2
2 1 1 2 1 2

5 3 2 2 3

5

1
2

11.5 10 Pa (1000 kg m ) (5.0 m s) (2.5m s) (1000 kg m )(9.8m/s )(10 m)
2

2.6 10 Pa.

p p v v g h hρ ρ= + − + −

⎡ ⎤= × + − +⎣ ⎦

= ×

2  

46. We use Bernoulli’s equation: 
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( )2 2
2 1

1
2ip p gD v vρ ρ− = + − 2  

 
where ρ = 1000 kg/m3, D = 180 m, v1 = 0.40 m/s and v2 = 9.5 m/s. Therefore, we find ∆p = 1.7 × 
106 Pa, or 1.7 MPa. The SI unit for pressure is the Pascal (Pa) and is equivalent to N/m2. 
 
47. (a) The equation of continuity leads to 
 

2
1

2 2 1 1 2 1 2
2

rv A v A v v
r

⎛ ⎞
= ⇒ = ⎜ ⎟

⎝ ⎠
 

 
which gives v2 = 3.9 m/s. 
 
(b) With h = 7.6 m and p1 = 1.7 × 105 Pa, Bernoulli’s equation reduces to 
 

( )2 2 4
2 1 1 2

1 8.8 10 Pa.
2

p p gh v vρ ρ= − + − = ×  

 
54. (a) The volume of water (during 10 minutes) is 
 

( ) ( ) ( ) ( ) ( )2 3
1 1 15m s 10 min 60s min 0.03m 6.4 m .

4
V v t A π⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

 
(b) The speed in the left section of pipe is 
 

( )
2 2

1 1
2 1 1

2 2

3.0cm15m s 5.4 m s.
5.0cm

A dv v v
A d

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
(c) Since 2 21 1

1 1 1 2 2 2 1 2 12 2  and ,p v gh p v gh h h p pρ ρ ρ ρ+ + = + + = = 0 , which is the atmospheric 
pressure, 
 

( ) ( ) ( ) ( )2 22 2 5 3 3
2 0 1 2

5

1 11.01 10 Pa 1.0 10 kg m 15m s 5.4m s
2 2

1.99 10 Pa 1.97atm.

p p v vρ ⎡ ⎤= + − = × + × −⎣ ⎦

= × =
 

 
Thus the gauge pressure is (1.97 atm – 1.00 atm) = 0.97 atm = 9.8 × 104 Pa. 
 
66. The normal force  exerted (upward) on the glass ball of mass m has magnitude 0.0948 N.  
The buoyant force exerted by the milk (upward) on the ball has magnitude  

NF

 
Fb = ρmilk g V 
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where V = 43  π r3  is the volume of the ball.  Its radius is r = 0.0200 m. The milk density is ρmilk = 
1030 kg/m3.  The (actual) weight of the ball is, of course, downward, and has magnitude  Fg = 
mglass g.  Application of Newton's second law (in the case of zero acceleration) yields 
                                                  FN + ρmilk g V − mglass g = 0 
 
which leads to mglass = 0.0442 kg.  We note the above equation is equivalent to Eq.14-19 in the 
textbook. 
 
70. To be as general as possible, we denote the ratio of body density to water density as f (so that 
f = ρ/ρw = 0.95 in this problem). Floating involves an equilibrium of vertical forces acting on the 
body (Earth’s gravity pulls down and the buoyant force pushes up). Thus, 
 

b g w wF F gV gVρ ρ= ⇒ =  
 
where V is the total volume of the body and Vw is the portion of it which is submerged.  
 
(a) We rearrange the above equation to yield  
 

w

w

V f
V

ρ
ρ

= =  

 
which means that 95% of the body is submerged and therefore 5% is above the water surface.  
 
(b) We replace ρw with 1.6ρw in the above equilibrium of forces relationship, and find  
 

1.6 1.6
w

w

V f
V

ρ
ρ

= =  

 
which means that 59% of the body is submerged and thus 41% is above the quicksand surface. 
 
(c) The answer to part (b) suggests that a person in that situation is able to breathe. 
 
 
76. The downward force on the balloon is mg and the upward force is Fb = ρoutVg. Newton’s 
second law (with m = ρinV) leads to 
 

out
out in in

in

1 .Vg Vg Va g aρρ ρ ρ
ρ

⎛ ⎞− = ⇒ − =⎜ ⎟
⎝ ⎠

 

 
The problem specifies ρout / ρin = 1.39 (the outside air is cooler and thus more dense than the hot 
air inside the balloon). Thus, the upward acceleration is (1.39 – 1.00)(9.80 m/s2) = 3.82 m/s2. 
 
 
79. (a) From Bernoulli equation 21 1

1 1 1 2 22 2p v gh p v ghρ ρ ρ ρ+ + = + +2
2 , the height of the water 

extended up into the standpipe for section B is related to that for section D by 
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 ( )2 21
2B D D Bh h v v

g
= + −  

 
Equation of continuity further implies that D D Bv A v AB= , or 
 

 
2

2 4D B
B D D

B B

A Rv v v
A R

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
Dv  

 
where  
 

2 3 3 2/( ) (2.0 10 m /s) /( (0.040 m) ) 0.40 m/s.D V Dv R Rπ π−= = × =  
 
With , we have 0.50 mDh =
 

 2
2

10.50 m ( 15)(0.40 m/s) 0.38 m.
2(9.8 m/s )Bh = + − =  

 
(b) From the above result, we see that the greater the radius of the cross-sectional area, the 
greater the height. Thus, . C D B Ah h h h> > >
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