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Halliday/Resnick/Walker 7e  

Chapter 15 - Oscillations 
 

 

1. (a) The amplitude is half the range of the displacement, or xm = 1.0 mm. 

 

(b) The maximum speed vm is related to the amplitude xm by vm = ωxm, where ω is the angular 

frequency. Since ω = 2πf, where f is the frequency, 
 

( )( )3= 2 = 2 120 Hz 1.0 10  m = 0.75 m/s.m mv fxπ π −×  

 

(c) The maximum acceleration is 
 

( ) ( )( ) ( )222 3 2 2= = 2 = 2 120 Hz 1.0 10  m = 5.7 10  m/s .m m ma x f xω π π −× ×  

 

5. (a) The motion repeats every 0.500 s so the period must be T = 0.500 s. 

 

(b) The frequency is the reciprocal of the period: f = 1/T = 1/(0.500 s) = 2.00 Hz. 

 

(c) The angular frequency ω is ω = 2πf = 2π(2.00 Hz) = 12.6 rad/s. 

 

(d) The angular frequency is related to the spring constant k and the mass m by  ω = k m . We 

solve for k: k = mω2
 = (0.500 kg)(12.6 rad/s)

2
 = 79.0 N/m. 

 

(e) Let xm be the amplitude. The maximum speed is vm = ωxm = (12.6 rad/s)(0.350 m) = 4.40 m/s. 

 

(f) The maximum force is exerted when the displacement is a maximum and its magnitude is 

given by Fm = kxm = (79.0 N/m)(0.350 m) = 27.6 N. 

 

 

7. (a) During simple harmonic motion, the speed is (momentarily) zero when the object is at a 

“turning point” (that is, when x = +xm or x = –xm). Consider that it starts at x = +xm and we are 

told that t = 0.25 second elapses until the object reaches x = –xm. To execute a full cycle of the 

motion (which takes a period T to complete), the object which started at x = +xm must return to x 

= +xm (which, by symmetry, will occur 0.25 second after it was at x = –xm). Thus, T = 2t = 0.50 s. 

 

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz. 

 

(c) The 36 cm distance between x = +xm and x = –xm is 2xm. Thus, xm = 36/2 = 18 cm. 

 

8. (a) Since the problem gives the frequency f = 3.00 Hz, we have ω = 2πf = 6π rad/s (understood 

to be valid to three significant figures). Each spring is considered to support one fourth of the 

mass mcar so that Eq. 15-12 leads to 
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( ) ( )2 5

car

1
      1450kg 6  rad/s 1.29 10 N/m.

/ 4 4

k
k

m
ω π= ⇒ = = ×  

 

(b) If the new mass being supported by the four springs is mtotal = [1450 + 5(73)] kg = 1815 kg, 

then Eq. 15-12 leads to 

 
5

new new

total

1 1.29 10  N/m
     2.68Hz.

/ 4 2 (1815 / 4) kg

k
f

m
ω

π
×

= ⇒ = =  

 

 

13. The magnitude of the maximum acceleration is given by am = ω2
xm, where ω is the angular 

frequency and xm is the amplitude.  

 

(a) The angular frequency for which the maximum acceleration is g is given by ω = g xm/ , and 

the corresponding frequency is given by 

 
2

6

1 1 9.8 m/s
498  Hz.

2 2 2 1.0 10 mm

g
f

x

ω
π π π −

= = = =
×

 

 

(b) For frequencies greater than 498 Hz, the acceleration exceeds g for some part of the motion. 

 

14. From highest level to lowest level is twice the amplitude xm of the motion. The period is 

related to the angular frequency by Eq. 15-5. Thus,  x dm =
1
2  and ω = 0.503 rad/h. The phase 

constant φ in Eq. 15-3 is zero since we start our clock when xo = xm (at the highest point). We 

solve for t when x is one-fourth of the total distance from highest to lowest level, or (which is the 

same) half the distance from highest level to middle level (where we locate the origin of 

coordinates). Thus, we seek t when the ocean surface is at x x dm= =1
2

1
4 . 

 

x x t

d d t

t

m= +

= FHG
I
KJ +

=

cos( )

cos .

cos( . )

ω φ

1

4

1

2
0 503 0

1

2
0 503

b g  

 

which has t = 2.08 h as the smallest positive root. The calculator is in radians mode during this 

calculation. 

 

15. The maximum force that can be exerted by the surface must be less than µsFN or else the 

block will not follow the surface in its motion. Here, µs is the coefficient of static friction and FN 

is the normal force exerted by the surface on the block. Since the block does not accelerate 

vertically, we know that FN = mg, where m is the mass of the block. If the block follows the table 

and moves in simple harmonic motion, the magnitude of the maximum force exerted on it is 
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given by F = mam = mω2
xm = m(2πf)2

xm, where am is the magnitude of the maximum acceleration, 

ω is the angular frequency, and f is the frequency. The relationship ω = 2πf was used to obtain 

the last form. We substitute F = m(2πf)2
xm and FN = mg into F < µsFN to obtain m(2πf)2

xm < µsmg. 

The largest amplitude for which the block does not slip is 

 

 =
2

=
0.50 9.8

2 2.0
0 031

2

2

2
x

g

f
m

sµ

π πb g
b gc h
b g

 m / s

 Hz×
= . .m  

 

A larger amplitude requires a larger force at the end points of the motion. The surface cannot 

supply the larger force and the block slips. 

 
 

17. (a) Eq. 15-8 leads to 

 

a x
a

x
= − ⇒ =

−
=ω ω2 123

0100.
 

 

which yields ω = 35.07 rad/s. Therefore, f = ω/2π = 5.58 Hz. 

 

(b) Eq. 15-12 provides a relation between ω (found in the previous part) and the mass: 

 

2

400 N/m
=     0.325kg.

(35.07 rad/s)

k
m

m
ω ⇒ = =  

  

(c) By energy conservation, 1
2

2kxm  (the energy of the system at a turning point) is equal to the 

sum of kinetic and potential energies at the time t described in the problem. 

 

 
1

2
=

1

2
+

1

2
= + . 2 2 2 2 2kx mv kx x

m

k
v xm m⇒  

 

Consequently, 2 2
(0.325 / 400)(13.6) (0.100) 0.400m.mx = + =  

 

 

25. To be on the verge of slipping means that the force exerted on the smaller block (at the point 

of maximum acceleration) is fmax = µs mg. The textbook notes (in the discussion immediately 

after Eq. 15-7) that the acceleration amplitude is am =ω2
xm, where ω = +k m M/ ( )  is the 

angular frequency (from Eq. 15-12). Therefore, using Newton’s second law, we have 

 

 =
+

=  ma mg
k

m M
x gm s m sµ µ⇒  

 

which leads to xm = 0.22 m. 



HRW 7e Chapter 15 Page 4 of 8 

 

  

 

31. The total energy is given by E kxm= 1
2

2
, where k is the spring constant and xm is the amplitude. 

We use the answer from part (b) to do part (a), so it is best to look at the solution for part (b) first. 

 

(a) The fraction of the energy that is kinetic is 

 

1 3
= =1 =1 = 0.75

4 4

K E U U

E E E

−
− − =  

 

where the result from part (b) has been used. 

 

(b) When x xm= 1
2  the potential energy is U kx kxm= =1

2

2 1
8

2
. The ratio is 

 

21
8

21
2

1
= 0.25.

4

m

m

kxU

E kx
= =  

 

(c) Since E kxm= 1
2

2
 and U kx= 1

2

2 , U/E = x xm

2 2
. We solve x xm

2 2
 = 1/2 for x. We should get 

x xm= / 2 . 

 

32. We infer from the graph (since mechanical energy is conserved) that the total energy in the 

system is 6.0 J; we also note that the amplitude is apparently xm = 12 cm = 0.12 m.  Therefore we 

can set the maximum potential energy equal to 6.0 J and solve for the spring constant k: 

     
1

2
 k xm

2
 = 6.0 J     ⇒     k = 8.3 ×10

2
 N/m . 

 

33. (a) Eq. 15-12 (divided by 2π) yields 

 

 =
1

2

1

2

1000

5 00
2 25f

k

mπ π
= =

N / m

kg
Hz

.
. . 

 

(b) With xo = 0.500 m, we have U kx0
1
2 0

2 125= = J . 

 

(c) With vo = 10.0 m/s, the initial kinetic energy is K mv0
1
2 0

2 250= = J . 

 

(d) Since the total energy E = Ko + Uo = 375 J is conserved, then consideration of the energy at 

the turning point leads to 

 

 =
1

2

2
= 0.866 . 2E kx x

E

k
m m⇒ =  m  

 

36. We note that the spring constant is k = 4π2
m1/T 

2
 = 1.97 × 10

5
 N/m.  It is important to 

determine where in its simple harmonic motion (which “phase” of its motion) block 2 is when 
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the impact occurs.  Since ω = 2π/T  and the given value of t (when the collision takes place) is 

one-fourth of T, then  ωt = π/2 and the location then of block 2 is x = xmcos(ωt + φ) where φ = 

π/2 which gives x = xmcos(π/2 + π/2) =  –xm.  This means block 2 is at a turning point in its 

motion (and thus has zero speed right before the impact occurs); this means, too, that the spring 

is stretched an amount of 1 cm = 0.01 m at this moment.  To calculate its after-collision speed 

(which will be the same as that of block 1 right after the impact, since they stick together in the 

process) we use momentum conservation and obtain (4.0 kg)(6.0 m/s)/(6.0 kg) = 4.0 m/s. Thus, 

at the end of the impact itself (while block 1 is still at the same position as before the impact) the 

system (consisting now of a total mass M = 6.0 kg) has kinetic energy  
1

2
 (6.0 kg)(4.0 m/s)

2
 = 48 J 

and potential energy  
1

2
 (1.97 × 10

5
 N/m)(0.010 m)

2
 ≈ 10 J, meaning the total mechanical energy 

in the system at this stage is approximately 58 J.  When the system reaches its new turning point 

(at the new amplitude X ) then this amount must equal its (maximum) potential energy there: 
1

2
 

(1.97 × 10
5
) X

 2
.  Therefore, we find   

 

X = 2(58)/(1.97 x 10
5)  = 0.024 m. 

 

42. (a) Comparing the given expression to Eq. 15-3 (after changing notation x → θ ), we see that 

ω = 4.43 rad/s.  Since ω = g/L  then we can solve for the length: L = 0.499 m. 
 

(b) Since vm = ωxm = ωLθm = (4.43 rad/s)(0.499 m)(0.0800 rad) and m = 0.0600 kg, then we can 

find the maximum kinetic energy: 
1

2
 mvm

2
 = 9.40 ×  10

− 4 
J.  

 

53. Replacing x and v in Eq. 15-3 and Eq. 15-6 with θ and dθ/dt, respectively, we identify 4.44 

rad/s as the angular frequency ω.   Then we evaluate the expressions at t = 0 and divide the 

second by the first: 

 

        






dθ/dt

θ at t = 0
  =   − ω tanφ .  

 

(a) The value of θ at t = 0 is 0.0400 rad, and the value of dθ/dt then is –0.200 rad/s, so we are 

able to solve for the phase constant: φ = tan
−1

[0.200/(0.0400 x 4.44)] = 0.845 rad. 

 

(b) Once φ is determined we can plug back in to θo = θmcosφ to solve for the angular amplitude.  

We find θm = 0.0602 rad. 

 

58. Since the energy is proportional to the amplitude squared (see Eq. 15-21), we find the 

fractional change (assumed small) is 
 

 = =
2

= 2 . 
2

2 2

′ −
≈

E E

E

dE

E

dx

x

x dx

x

dx

x

m

m

m m

m

m

m
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Thus, if we approximate the fractional change in xm as dxm/xm, then the above calculation shows 

that multiplying this by 2 should give the fractional energy change. Therefore, if xm decreases by 

3%, then E must decrease by 6.0 %. 

 

65. (a) From the graph, we find xm = 7.0 cm = 0.070 m, and T = 40 ms = 0.040 s.  Thus, the 

angular frequency is ω = 2π/T = 157 rad/s.  Using m = 0.020 kg, the maximum kinetic energy is 

then 
1

2
 mv

2
 =  

1

2
 m ω2 

xm
2
  = 1.2 J. 

 

(b) Using Eq. 15-5, we have f = ω/2π = 50 oscillations per second.  Of course, Eq. 15-2 can also 

be used for this. 

 

75. (a) Hooke’s law readily yields k = (15 kg)(9.8 m/s
2
)/(0.12 m) = 1225 N/m. Rounding to three 

significant figures, the spring constant is therefore 1.23 kN/m. 

 

(b) We are told f = 2.00 Hz = 2.00 cycles/sec. Since a cycle is equivalent to 2π radians, we have 

ω = 2π(2.00) = 4π rad/s (understood to be valid to three significant figures). Using Eq. 15-12, we 

find 

 

( )2

1225  N/m
    7.76kg.

4  rad/s

k
m

m
ω

π
= ⇒ = =  

 

Consequently, the weight of the package is mg = 76.0 N. 

 

78. (a) The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration 

amplitude is am = ω2
xm, where ω is the angular frequency (ω = 2π f since there are 2π radians in 

one cycle). Therefore, in this circumstance, we obtain 
 

 = 2 1000 0.00040 = 1.6 10 . 
2 4 2am π  Hz  m  m / sa fb g a f ×  

 

(b) Similarly, in the discussion after Eq. 15-6, we find vm = ωxm so that 
 

 = 2 1000 0.00040 = 2.5 . vm π  Hz  m  m / sb gc hb g  

 

(c) From Eq. 15-8, we have (in absolute value) 
 

a  = 2 1000 0.00020 = 7.9 10 . 
2 3 2π  Hz  m  m / sb gc h b g ×  

 

(d) This can be approached with the energy methods of §15-4, but here we will use 

trigonometric relations along with Eq. 15-3 and Eq. 15-6. Thus, allowing for both roots 

stemming from the square root, 
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 ( ) ( )
2

2

2
sin 1 cos 1 .

m m

v x
t t

x x
ω φ ω φ

ω
+ = ± − + ⇒ − = ± −  

 

Taking absolute values and simplifying, we obtain 

 

( )2 2 2 2| | 2 2 1000 0.00040 0.00020 2.2 m/s.mv f x xπ π= − = − =  

 

86. Since the centripetal acceleration is horizontal and Earth’s gravitational 
�

g  is downward, we 

can define the magnitude of an “effective” gravitational acceleration using the Pythagorean 

theorem: 
 

eff

2
2

2
+= .

v
g g

R

 
 
 

 

 

Then, since frequency is the reciprocal of the period, Eq. 15-28 leads to 

 

f
g

L

g v R

L

eff= =
+1

2

1

2

2 4 2

π π
.  

 

With v = 70 m/s, R = 50m, and L = 0.20 m, we have 13.53 s 3.53 Hz.f −= =  

 

89. (a) Hooke’s law readily yields (0.300 kg)(9.8 m/s
2
)/(0.0200 m) = 147 N/m. 

 

(b) With m = 2.00 kg, the period is 
 

 = 2 0 733T
m

k
π = . s. 

 

100. (a) Eq. 15-21 leads to 
 

1 2 2(4.0)2= = = 0.20 m.
2 200

m m

E
E kx x

k
⇒ =  

  

(b) Since T m k= = ≈2 2 0 80 200 0π π/ . / .4 s , then the block completes 10/0.4 = 25 cycles 

during the specified interval. 

 

(c) The maximum kinetic energy is the total energy, 4.0 J. 

 

(d) This can be approached more than one way; we choose to use energy conservation: 
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 = + 4.0 =
1

2
+

1

2
. 2 2E K U mv kx⇒  

 

Therefore, when x = 0.15 m, we find v = 2.1 m/s. 

 

102. The period formula, Eq. 15-29, requires knowing the distance h from the axis of rotation 

and the center of mass of the system. We also need the rotational inertia I about the axis of 

rotation. From Figure 15-59, we see h = L + R where R = 0.15 m. Using the parallel-axis theorem, 

we find 

 

( )221
,

2
I MR M L R= + +  

 

where 1.0 kgM = . Thus, Eq. 15-29, with T = 2.0 s, leads to 

 

2 0 2
1
2

2 2

. =
+ +

+
π

MR M L R

Mg L R

b g
b g  

 

which leads to L = 0.8315 m. 

 

106.  =
0.108

6.02 10
= 1.8 10 . 

23

25m
 kg

 kg
×

× − Using Eq. 15-12 and the fact that f = ω/2π, we have 

 

( ) ( )2
13 13 25 21

1 10  Hz = 2 10 1.8 10 7 10 N/m.
2

k
k

m
π

π
−× ⇒ = × × ≈ ×  


