
HRW 7e Chapter 16 Page 1 of 13 

 

  

Halliday/Resnick/Walker 7e  

Chapter 16 – Waves 1 
 

1. (a) The motion from maximum displacement to zero is one-fourth of a cycle so 0.170 s is one-

fourth of a period. The period is T = 4(0.170 s) = 0.680 s. 

 

(b) The frequency is the reciprocal of the period: 

 

1 1
1.47Hz.

0.680s
f

T
= = =  

 

(c) A sinusoidal wave travels one wavelength in one period: 

 

1.40m
2.06m s.

0.680s
v

T
= = =

λ
 

 

2. (a) The angular wave number is 

 

12 2
3.49m .

1.80m
k −π π

= = =
λ

 

 

(b) The speed of the wave is 

 

( )( )1.80m 110rad s
31.5m s.

2 2
v f

ωλ
= λ = = =

π π
 

 

3. Let  y1 = 2.0 mm (corresponding to time t1) and y2 = –2.0 mm (corresponding to time t2).  Then 

we find  

 

kx + 600t1  + φ = sin−1
(2.0/6.0) 

and  

 

kx + 600t2  + φ = sin−1
(–2.0/6.0)  . 

 

Subtracting equations gives   

 

600(t1 – t2)  =  sin
−1
(2.0/6.0) – sin

−1
(–2.0/6.0). 

 

Thus we find t1 – t2  = 0.011 s  (or  1.1 ms). 

 

5. Using v = fλ, we find the length of one cycle of the wave is  

 

λ = 350/500 = 0.700 m = 700 mm. 
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From f = 1/T, we find the time for one cycle of oscillation is T = 1/500 = 2.00 × 10–3
 s = 2.00 ms. 

 

(a) A cycle is equivalent to 2π radians, so that π/3 rad corresponds to one-sixth of a cycle. The 
corresponding length, therefore, is λ/6 = 700/6 = 117 mm. 

 

(b) The interval 1.00 ms is half of T and thus corresponds to half of one cycle, or half of 2π rad. 
Thus, the phase difference is (1/2)2π = π rad. 
 

6. (a) The amplitude is ym = 6.0 cm. 

 

(b) We find λ from 2π/λ = 0.020π: λ = 1.0×102
 cm. 

 

(c) Solving 2πf = ω = 4.0π, we obtain f = 2.0 Hz. 

 

(d) The wave speed is v = λf = (100 cm) (2.0 Hz) = 2.0×10
2
 cm/s. 

 

(e) The wave propagates in the –x direction, since the argument of the trig function is kx + ωt 
instead of kx – ωt (as in Eq. 16-2). 
 

(f) The maximum transverse speed (found from the time derivative of y) is 

 

( ) ( )1

max 2 4.0 s 6.0cm 75cm s.mu fy −= π = π =  

 

(g) y(3.5 cm, 0.26 s) = (6.0 cm) sin[0.020π(3.5) + 4.0π(0.26)] = –2.0 cm. 

 

8. With length in centimeters and time in seconds, we have 

 

u   =   
du

dt
  =  225π sin (πx − 15πt)   . 

 

Squaring this and adding it to the square of 15πy, we have 

 

u
2
 + (15πy)2  =  (225π )2 [sin2

 (πx − 15π t) + cos2 (πx − 15π t)] 
 

so that 

 

u  =  (225π)2 - (15πy)2  =  15π 15
2
 - y

2
   . 

 

Therefore, where y = 12, u must be ± 135π.  Consequently, the speed there is 424 cm/s = 4.24 

m/s. 
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9. (a) The amplitude ym is half of the 6.00 mm vertical range shown in the figure, i.e., 

3.0 mm.my =  

 

(b) The speed of the wave is v = d/t = 15 m/s, where d = 0.060 m and t = 0.0040 s.  The angular 

wave number is k = 2π/λ where λ  = 0.40 m.  Thus,  

 

k = 
2π
 λ   =  16 rad/m . 

 

(c) The angular frequency is found from  

 

ω = k v = (16 rad/m)(15 m/s)=2.4×10
2
 rad/s. 

 

(d) We choose the minus sign (between kx and ωt) in the argument of the sine function because 

the wave is shown traveling to the right [in the +x direction] – see section 16-5).  Therefore, with 

SI units understood, we obtain 

 

y = ym sin(kx −kvt) ≈ 0.0030 sin(16 x  −  2.4 ×10
2 
 t) . 

 

12. The volume of a cylinder of height �  is V = πr2 �= πd2
� /4. The strings are long, narrow 

cylinders, one of diameter d1 and the other of diameter d2 (and corresponding linear densities µ1 

and µ2). The mass is the (regular) density multiplied by the volume: m = ρV, so that the mass-per-

unit length is  

 

 
2 24

4

m d dρ ρ
µ

�

� �

π π
= = =  

 

and their ratio is 

 

 

2
2

1 1 1

2

2 2 2

4
.

4

d d

d d

µ πρ
µ πρ

 
= =  

 
 

 

Therefore, the ratio of diameters is 

 

 1 1

2 2

3.0
3.2.

0.29

d

d

µ
µ

= = =  

 

13. The wave speed v is given by v = τ µ , where τ is the tension in the rope and µ is the linear 
mass density of the rope. The linear mass density is the mass per unit length of rope: µ = m/L = 
(0.0600 kg)/(2.00 m) = 0.0300 kg/m. Thus 
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500N

129m s.
0.0300kg m

v = =  

 

14. From v = τ µ , we have 

 

 
new newnew

old old old

2.
v

v

τ µ

τ µ
= =  

 

15. (a) The wave speed is given by v = λ/T = ω/k, where λ is the wavelength, T is the period, ω is 

the angular frequency (2π/T), and k is the angular wave number (2π/λ). The displacement has the 

form y = ym sin(kx + ωt), so k = 2.0 m–1
 and ω = 30 rad/s. Thus  

 

v = (30 rad/s)/(2.0 m
–1
) = 15 m/s. 

 

(b) Since the wave speed is given by v = τ µ , where τ is the tension in the string and µ is the 
linear mass density of the string, the tension is 

 

 ( )( )22 41.6 10 kg m 15m s 0.036N.vτ µ −= = × =  

 

16. We use /v = ∝τ µ τ  to obtain 

 

( )
2 2

2
2 1

1

180m/s
120N 135N.

170m/s

v

v

   = = =   
  

τ τ  

 

17. (a) The amplitude of the wave is ym=0.120 mm. 

 

(b) The wave speed is given by v = τ µ , where τ is the tension in the string and µ is the linear 

mass density of the string, so the wavelength is λ = v/f = τ µ /f and the angular wave number is 

 

( ) 12 0.50kg m
2 2 100Hz 141m .

10N
k f −π

= = π = π =
λ

µ
τ

 

 

(c) The frequency is f = 100 Hz, so the angular frequency is  

 

ω = 2πf = 2π(100 Hz) = 628 rad/s. 

 

(d) We may write the string displacement in the form y = ym sin(kx + ωt). The plus sign is used 
since the wave is traveling in the negative x direction. In summary, the wave can be expressed as 
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( ) ( ) ( )1 10.120mm sin 141m  + 628s .y x t− − =    

 

 

19. (a) We read the amplitude from the graph. It is about 5.0 cm. 

 

(b) We read the wavelength from the graph. The curve crosses y = 0 at about x = 15 cm and again 

with the same slope at about x = 55 cm, so  

 

λ = (55 cm – 15 cm) = 40 cm = 0.40 m. 

 

(c) The wave speed is / ,v = τ µ  where τ is the tension in the string and µ is the linear mass 

density of the string. Thus, 

 

3

3.6N
12 m/s.

25 10 kg/m
v −= =

×
 

 

(d) The frequency is f = v/λ = (12 m/s)/(0.40 m) = 30 Hz and the period is  

 

T = 1/f = 1/(30 Hz) = 0.033 s. 

 

(e) The maximum string speed is  

 

um = ωym = 2πfym = 2π(30 Hz) (5.0 cm) = 940 cm/s = 9.4 m/s. 

 

(f) The angular wave number is k = 2π/λ = 2π/(0.40 m) = 16 m
–1
. 

 

(g) The angular frequency is ω = 2πf = 2π(30 Hz) = 1.9×10
2
 rad/s 

 

(h) According to the graph, the displacement at x = 0 and t = 0 is 4.0 × 10–2
 m. The formula for 

the displacement gives y(0, 0) = ym sin φ. We wish to select φ so that 5.0 × 10–2
 sin φ = 4.0 × 10–2

. 

The solution is either 0.93 rad or 2.21 rad. In the first case the function has a positive slope at x = 

0 and matches the graph. In the second case it has negative slope and does not match the graph. 

We select φ = 0.93 rad.  
 

(i) The string displacement has the form y (x, t) = ym sin(kx + ωt + φ). A plus sign appears in the 

argument of the trigonometric function because the wave is moving in the negative x direction. 

Using the results obtained above, the expression for the displacement is 

 

( )2 1 1( , ) 5.0 10 m sin (16m ) (190s ) 0.93 .− − − = × + + y x t x t  

 

24. Using Eq. 16–33 for the average power and Eq. 16–26 for the speed of the wave, we solve for 

f = ω/2π: 
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avg

3

21 1 2(85.0W)
198 Hz.

2 2 (7.70 10 m)/ (36.0N)(0.260kg / 2.70m)m

P
f

y µ τ µ −= = =
π π ×

 

 

25. We note from the graph (and from the fact that we are dealing with a cosine-squared, see Eq. 

16-30) that the wave frequency is f = 
1

2 ms
 = 500 Hz, and that the wavelength λ = 0.20 m.  We also 

note from the graph that the maximum value of dK/dt is 10 W.  Setting this equal to the 

maximum value of Eq. 16-29 (where we just set that cosine term equal to 1) we find 

 
1

2
  µ v ω2 

ym
2
  =  10 

 

with SI units understood.  Substituting in µ = 0.002 kg/m, ω = 2πf  and  v = f λ , we solve for the 

wave amplitude:  

 

ym = 
10

2π2µλ  f 3
  =  0.0032 m . 

 

29. The displacement of the string is given by  

 

sin( ) sin( )m my y kx t y kx tω ω φ= − + − +  ( ) ( )1 1
2 2

2 cos sinmy kx tφ ω φ= − + , 

 

where φ = π/2. The amplitude is  

 

( )1
2

2 cosmA y φ= 2 cos( / 4) 1.41m my y= π = . 

 

 

32. (a) We use Eq. 16-26 and Eq. 16-33 with µ = 0.00200 kg/m and  ym = 0.00300 m.  These give 

v = τ / µ  = 775 m/s and   

 

Pavg = 
1

2
  µv ω2

ym
2
 = 10 W. 

 

(b) In this situation, the waves are two separate string (no superposition occurs).  The answer is 

clearly twice that of part (a); P = 20 W. 

 

(c) Now they are on the same string.  If they are interfering constructively (as in Fig. 16-16(a)) 

then the amplitude ym is doubled which means its square ym
2
 increases by a factor of 4.  Thus, the 

answer now is four times that of part (a);  P = 40 W. 

 

(d) Eq. 16-52 indicates in this case that the amplitude (for their superposition) is  

2 ymcos(0.2π) = 1.618 times the original amplitude ym.  Squared, this results in an increase in the 

power by a factor of 2.618.  Thus, P = 26 W in this case. 
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(e) Now the situation depicted in Fig. 16-16(b) applies, so P = 0. 

 

38. The nth resonant frequency of string A is 

 

, ,
2 2

A
n A

A

v n
f n

l L

τ
µ

= =  

 

while for string B it is 

 

, ,

1
.

2 8 4

B
n B n A

B

v n
f n f

l L

τ
µ

= = =  

 

(a) Thus, we see f1,A = f4,B. That is, the fourth harmonic of B matches the frequency of A’s first 

harmonic. 

 

(b) Similarly, we find f2,A = f8,B. 

 

(c) No harmonic of B would match 3,

3 3
,

2 2

A
A

A

v
f

l L

τ
µ

= =  

 

39. Possible wavelengths are given by λ = 2L/n, where L is the length of the wire and n is an 

integer. The corresponding frequencies are given by f = v/λ = nv/2L, where v is the wave speed. 

The wave speed is given by / ,v L Mτ µ τ= =  where τ is the tension in the wire, µ is the 
linear mass density of the wire, and M is the mass of the wire. µ = M/L was used to obtain the last 

form. Thus 

 

250 N
 (7.91 Hz).

2 2 2 (10.0 m) (0.100 kg)
n

n L n n
f n

L M LM

τ τ
= = = =  

 

(a) The lowest frequency is 1 7.91 Hz.f =  

 

(b) The second lowest frequency is 2 2(7.91 Hz) 15.8 Hz.f = =  

 

(c) The third lowest frequency is 3 3(7.91 Hz) 23.7 Hz.f = =  

 

40. (a) The wave speed is given by 

 

3

7.00N
66.1m/s.

2.00  10 kg/1.25m
v −= = =

×
τ
µ
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(b) The wavelength of the wave with the lowest resonant frequency f1 is λ1 = 2L, where L = 125 

cm. Thus, 

 

1

1

66.1 m/s
26.4 Hz.

2(1.25 m)

v
f = = =

λ
 

 

41. (a) The wave speed is given by ,v τ µ=  where τ is the tension in the string and µ is the 
linear mass density of the string. Since the mass density is the mass per unit length, µ = M/L, 

where M is the mass of the string and L is its length. Thus 

 

(96.0 N) (8.40 m)
82.0 m/s.

0.120 kg

L
v

M
= = =

τ
 

 

(b) The longest possible wavelength λ for a standing wave is related to the length of the string by 

L = λ/2, so λ = 2L = 2(8.40 m) = 16.8 m. 

 

(c) The frequency is f = v/λ = (82.0 m/s)/(16.8 m) = 4.88 Hz. 

 

43. (a) Eq. 16–26 gives the speed of the wave: 

 

2

3

150N
144.34 m/s 1.44 10 m/s.

7.20 10 kg/m
v

τ
µ −= = = ≈ ×

×
 

 

(b) From the Figure, we find the wavelength of the standing wave to be λ = (2/3)(90.0 cm) = 60.0 

cm. 

 

(c) The frequency is 

 
21.44 10 m/s

241Hz.
0.600m

v
f

×
= = =

λ
 

 

44. Use Eq. 16–66 (for the resonant frequencies) and Eq. 16–26 ( / )v τ µ=  to find fn: 

 

2 2
n

nv n
f

L L

τ
µ

= =  

 

which gives f3 = (3/2L) iτ µ . 

 

(a) When τf = 4τi, we get the new frequency 
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3 3

3
2 .

2

f
f f

L

τ
= =′

µ
 

 

(b) And we get the new wavelength 

 

3 3

3

2
.

3

v L

f

′
′λ = = = λ

′
 

 

45. (a) The resonant wavelengths are given by λ = 2L/n, where L is the length of the string and n 

is an integer, and the resonant frequencies are given by f = v/λ = nv/2L, where v is the wave speed. 

Suppose the lower frequency is associated with the integer n. Then, since there are no resonant 

frequencies between, the higher frequency is associated with n + 1. That is, f1 = nv/2L is the 

lower frequency and f2 = (n + 1)v/2L is the higher. The ratio of the frequencies is 

 

2

1

1
.

f n

f n

+
=  

 

The solution for n is 

 

1

2 1

315 Hz
3.

420 Hz 315 Hz

f
n

f f
= = =

− −
 

 

The lowest possible resonant frequency is f = v/2L = f1/n = (315 Hz)/3 = 105 Hz. 

 

(b) The longest possible wavelength is λ = 2L. If f is the lowest possible frequency then  

 

v = λf = 2Lf = 2(0.75 m)(105 Hz) = 158 m/s. 

 

46. The harmonics are integer multiples of the fundamental, which implies that the difference 

between any successive pair of the harmonic frequencies is equal to the fundamental frequency.   

Thus, f1 = (390 Hz – 325 Hz) = 65 Hz.  This further implies that the next higher resonance above 

195 Hz should be (195 Hz + 65 Hz) = 260 Hz. 

 

59. (a) Recalling the discussion in §16-5, we see that the speed of the wave given by a function 

with argument x – 5.0t (where x is in centimeters and t is in seconds) must be 5.0 cm/s . 

 

(b) In part (c), we show several “snapshots” of the wave: the one on the left is as shown in Figure 

16–45 (at t = 0), the middle one is at t = 1.0 s, and the rightmost one is at 2.0 st = . It is clear that 

the wave is traveling to the right (the +x direction). 

 

(c) The third picture in the sequence below shows the pulse at 2.0 s. The horizontal scale (and, 

presumably, the vertical one also) is in centimeters. 
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(d) The leading edge of the pulse reaches x = 10 cm at t = (10 – 4.0)/5 = 1.2 s. The particle (say, 

of the string that carries the pulse) at that location reaches a maximum displacement h = 2 cm at t 

= (10 – 3.0)/5 = 1.4 s. Finally, the trailing edge of the pulse departs from x = 10 cm at t = (10 – 

1.0)/5 = 1.8 s. Thus, we find for h(t) at x = 10 cm (with the horizontal axis, t, in seconds): 

 

 
 

67. (a) We take the form of the displacement to be y (x, t) = ym sin(kx – ωt). The speed of a point 
on the cord is u (x, t) = ∂y/∂t = –ωym cos(kx – ωt) and its maximum value is um = ωym. The wave 

speed, on the other hand, is given by v = λ/T = ω/k. The ratio is 

 

2
.

/

m m m
m

u y y
ky

v k

π
= = =

λ
ω
ω

 

 

(b) The ratio of the speeds depends only on the ratio of the amplitude to the wavelength. 

Different waves on different cords have the same ratio of speeds if they have the same amplitude 

and wavelength, regardless of the wave speeds, linear densities of the cords, and the tensions in 

the cords. 

 

68. Let the cross-sectional area of the wire be A and the density of steel be ρ. The tensile stress is 
given by τ/A where τ is the tension in the wire. Also, µ = ρA. Thus, 
 

8 2
2max max

max 3

7.00 10 N m
     3.00 10 m s

7800kg m

A
v

τ τ
µ ρ

×
= = = = ×  

 

which is indeed independent of the diameter of the wire. 
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83. To oscillate in four loops means n = 4 in Eq. 16-65 (treating both ends of the string as 

effectively “fixed”). Thus, λ = 2(0.90 m)/4 = 0.45 m. Therefore, the speed of the wave is v = fλ = 
27 m/s. The mass-per-unit-length is  

 

µ = m/L = (0.044 kg)/(0.90 m) = 0.049 kg/m. 

 

Thus, using Eq. 16-26, we obtain the tension:  

 

τ = v2 µ = (27)2(0.049) = 36 N. 

 

89. (a) For visible light 

 
8

14

min 9

max

3.0 10 m s
4.3 10 Hz

700 10 m

c
f −

×
= = = ×

λ ×
 

 

and 

 
8

14

max 9

min

3.0 10 m s
7.5 10 Hz.

400 10 m

c
f −

×
= = = ×

λ ×
 

 

(b) For radio waves 

 
8

min 6

max

3.0 10 m s
1.0m

300 10 Hz

c ×
λ = = =

λ ×
 

 

and 

 
8

2

max 6

min

3.0 10 m s
2.0 10 m.

1.5 10 Hz

c ×
λ = = = ×

λ ×
 

 

(c) For X rays 

 
8

16

min 9

max

3.0 10 m s
6.0 10 Hz

5.0 10 m

c
f −

×
= = = ×

λ ×
 

 

and 

 
8

19

max 11

min

3.0 10 m s
3.0 10 Hz.

1.0 10 m

c
f −

×
= = = ×

λ ×
 

 

94. We refer to the points where the rope is attached as A and B, respectively. When A and B are 

not displaced horizontal, the rope is in its initial state (neither stretched (under tension) nor slack). 
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If they are displaced away from each other, the rope is clearly stretched. When A and B are 

displaced in the same direction, by amounts (in absolute value) |ξA| and |ξB|, then if |ξA| < |ξB| then 
the rope is stretched, and if |ξA| > |ξB| the rope is slack. We must be careful about the case where 

one is displaced but the other is not, as will be seen below. 

 

(a) The standing wave solution for the shorter cable, appropriate for the initial condition ξ = 0 at t 
= 0, and the boundary conditions ξ = 0 at x = 0 and x = L (the x axis runs vertically here), is ξA = 
ξm sin(kAx) sin(ωAt). The angular frequency is ωA = 2π/TA, and the wave number is kA = 2π/λA 

where λA = 2L (it begins oscillating in its fundamental mode) where the point of attachment is x 

= L/2. The displacement of what we are calling point A at time t = ηTA (where η is a pure number) 

is 

 

( )2 2
sin sin sin 2 .

2 2
A m A m

A

L
T

L T

 π π ξ = ξ = ξ π  
   

η η  

 

The fundamental mode for the longer cable has wavelength λB = 2λA = 2(2L) = 4L, which implies 

(by v = fλ and the fact that both cables support the same wave speed v) that 1
2B Af f=  or 

1
2B A=ω ω . Thus, the displacement for point B is 

 

( )2 1 2
sin sin sin .

4 2 2 2

m
B m A

A

L
T

L T

  π π ξ ξ = ξ = π   
    

η η  

 

Running through the possibilities ( )3 5 3 71 1
4 2 4 4 2 4
, , ,1, , , ,and 2=η  we find the rope is under tension 

in the following cases. The first case is one we must be very careful about in our reasoning, since 

A is not displaced but B is displaced in the positive direction; we interpret that as the direction 

away from A (rightwards in the figure) — thus making the rope stretch. 

 

1
0 0

2 2

3
0 0

4 2

7
0 0

4 2

m
A B

m
A m B

m
A m B

η

η

η

ξ
= ξ = ξ = >

ξ
= ξ = −ξ < ξ = >

ξ
= ξ = −ξ < ξ = − <

 

 

where in the last case they are both displaced leftward but A more so than B so that the rope is 

indeed stretched. 

 

(b) The values of η (where we have defined η = t/TA) which reproduce the initial state are 

 

1 0 0 and

2 0 0.

A B

B B

= ξ = ξ =

= ξ = ξ =

η

η
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(c) The values of η for which the rope is slack are given below. In the first case, both 

displacements are to the right, but point A is farther to the right than B. In the second case, they 

are displaced towards each other. 

 

1
0 0

4 2

5
0 0

4 2

3
0 0

2 2

m
A m B

m
A m B

m
A B

xη

η

η

ξ
= ξ = > ξ = >

ξ
= ξ = ξ > ξ = − <

ξ
= ξ = ξ = − <

 

 

where in the third case B is displaced leftward toward the undisplaced point A. 

 

(d) The first design works effectively to damp fundamental modes of vibration in the two cables 

(especially in the shorter one which would have an anti-node at that point), whereas the second 

one only damps the fundamental mode in the longer cable. 

 

 


