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Halliday/Resnick/Walker 7e  

Chapter 25 – Capacitance 
 

2. (a) The capacitance of the system is 

 

C
q

V
= = =
∆
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(b) The capacitance is independent of q; it is still 3.5 pF. 

 

(c) The potential difference becomes 

 

∆V
q
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3. (a) The capacitance of a parallel-plate capacitor is given by C = ε0A/d, where A is the area of 
each plate and d is the plate separation. Since the plates are circular, the plate area is A = πR2, 
where R is the radius of a plate. Thus, 

 

( ) ( )212 22
100

3
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− −

−
−
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(b) The charge on the positive plate is given by q = CV, where V is the potential difference 

across the plates. Thus,  

 

q = (1.44 × 10–10 F)(120 V) = 1.73 × 10–8 C = 17.3 nC. 
 

5. Assuming conservation of volume, we find the radius of the combined spheres, then use C = 

4πε0R to find the capacitance. When the drops combine, the volume is doubled. It is then V = 
2(4π/3)R3. The new radius R' is given by 
 

( )3 34 4
2     

3 3
R R′ = ⇒

p p
   ′ =R R21 3 . 

 

The new capacitance is 
1 3

0 0 04 4 2 5.04 .C R R Rε ε ε′ ′= = =p p p  

 

With R = 2.00 mm, we obtain ( )( )12 3 135.04 8.85 10 F m 2.00 10 m 2.80 10 FC π − − −= × × = × . 

 

7. The equivalent capacitance is given by Ceq = q/V, where q is the total charge on all the 

capacitors and V is the potential difference across any one of them. For N identical capacitors in 

parallel, Ceq = NC, where C is the capacitance of one of them. Thus, /NC q V=  and 
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9. The equivalent capacitance is 

 

( ) ( ) ( )1 2 3

eq

1 2 3

10.0 F 5.00 F 4.00 F
3.16 F.

10.0 F 5.00 F 4.00 F

C C C
C

C C C

µ µ µ
µ

µ µ µ
+ +

= = =
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10. The charge that passes through meter A is 

 

q C V CV= = = =eq F V C.3 3 250 4200 0 315. .µb gb g  

 

11. (a) and (b) The original potential difference V1 across C1 is 

 

( )( )eq

1

1 2

3.16 F 100.0V
21.1V.

10.0 F 5.00 F

C V
V

C C

µ
µ µ

= = =
+ +

 

 

Thus ∆V1 = 100.0 V – 21.1 V = 78.9 V and  
 

∆q1 = C1∆V1 = (10.0 µF)(78.9 V) = 7.89 × 10–4 C. 
 

12. (a) The potential difference across C1 is V1 = 10.0 V. Thus,  

 

q1 = C1V1 = (10.0 µF)(10.0 V) = 1.00 × 10–4 C. 
 

(b) Let C = 10.0 µF. We first consider the three-capacitor combination consisting of C2 and its 
two closest neighbors, each of capacitance C. The equivalent capacitance of this combination is 

 

2
eq

2

1 50 
C C

C C . C.
C C

= + =
+

 

 

Also, the voltage drop across this combination is 

 

1 1
10 40

1 50 eq

CV CV
V . V .

C C C . C
= = =

+ +
 

 

Since this voltage difference is divided equally between C2 and the one connected in series with 

it, the voltage difference across C2 satisfies V2 = V/2 = V1/5. Thus 

 

( ) 5

2 2 2

10 0V
10 0 F 2 00 10 C.
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q C V . .µ − = = = × 

 
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13. The charge initially on the charged capacitor is given by q = C1V0, where C1 = 100 pF is the 

capacitance and V0 = 50 V is the initial potential difference. After the battery is disconnected and 

the second capacitor wired in parallel to the first, the charge on the first capacitor is q1 = C1V, 

where V = 35 V is the new potential difference. Since charge is conserved in the process, the 

charge on the second capacitor is q2 = q – q1, where C2 is the capacitance of the second capacitor. 

Substituting C1V0 for q and C1V for q1, we obtain q2 = C1 (V0 – V). The potential difference 

across the second capacitor is also V, so the capacitance is 

 

( )02
2 1

50V 35V
100pF 43pF.

35V

V Vq
C C

V V

− −
= = = =  

 

14. The two 6.0 µF capacitors are in parallel and are consequently equivalent to eq 12 FC µ= .  

Thus, the total charge stored (before the squeezing) is  

 

qtotal  =  CeqVbattery =120 µC . 
 

(a) and (b)  As a result of the squeezing, one of the capacitors is now 12 µF (due to the inverse 
proportionality between C and d in Eq. 25-9) which represents an increase of 6.0 Fµ  and thus a 

charge increase of  

 

∆qtotal  =  ∆CeqVbattery = (6.0 µF)(10 V) = 60 µC . 
 

15. (a) First, the equivalent capacitance of the two 4.00 µF capacitors connected in series is given 
by 4.00 µF/2 = 2.00 µF. This combination is then connected in parallel with two other 2.00-µF 
capacitors (one on each side), resulting in an equivalent capacitance C = 3(2.00 µF) = 6.00 µF. 
This is now seen to be in series with another combination, which consists of the two 3.0-µF 
capacitors connected in parallel (which are themselves equivalent to C' = 2(3.00 µF) = 6.00 µF). 
Thus, the equivalent capacitance of the circuit is 

 

( ) ( )
eq

6 00 F 6 00 F
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µ
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(b) Let V = 20.0 V be the potential difference supplied by the battery. Then  

 

q = CeqV = (3.00 µF)(20.0 V) = 6.00 × 10–5 C. 
 

(c) The potential difference across C1 is given by 

 

( ) ( )
1

6 00 F 20 0V
10 0V

6 00 F 6 00 F

. .CV
V . .

C C . .

µ
µ µ

= = =
′+ +

 

 

(d) The charge carried by C1 is q1 = C1V1= (3.00 µF)(10.0 V) = 3.00 × 10–5 C. 
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(e) The potential difference across C2 is given by V2 = V – V1 = 20.0 V – 10.0 V = 10.0 V.  

 

(f) The charge carried by C2 is q2 = C2V2 = (2.00 µF)(10.0 V) = 2.00 × 10–5 C. 
 

(g) Since this voltage difference V2 is divided equally between C3 and the other 4.00-µF 
capacitors connected in series with it, the voltage difference across C3 is given by V3 = V2/2 = 

10.0 V/2 = 5.00 V.  

 

(h) Thus, q3 = C3V3 = (4.00 µF)(5.00 V) = 2.00 × 10–5 C. 
 

18. Eq. 23-14 applies to each of these capacitors.  Bearing in mind that σ = q/A, we find the total 
charge to be 

 

qtotal  = q1 + q2 =  σ 1 A1  + σ 2 A2 =   εo E1 A1  + εo E2 A2  =  3.6 pC 
 

where we have been careful to convert cm
2
 to m

2
 by dividing by 10

4
. 

 

21. The charges on capacitors 2 and 3 are the same, so these capacitors may be replaced by an 

equivalent capacitance determined from 

 

1 1 1

2 3

2 3

2 3C C C

C C

C Ceq

= + =
+

.  

 

Thus, Ceq = C2C3/(C2 + C3). The charge on the equivalent capacitor is the same as the charge on 

either of the two capacitors in the combination and the potential difference across the equivalent 

capacitor is given by q2/Ceq. The potential difference across capacitor 1 is q1/C1, where q1 is the 

charge on this capacitor. The potential difference across the combination of capacitors 2 and 3 

must be the same as the potential difference across capacitor 1, so q1/C1 = q2/Ceq. Now some of 

the charge originally on capacitor 1 flows to the combination of 2 and 3. If q0 is the original 

charge, conservation of charge yields q1 + q2 = q0 = C1 V0, where V0 is the original potential 

difference across capacitor 1.  

 

(a) Solving the two equations 

 

q

C

q
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q q CV1

1
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eq

and  

 

for q1 and q2, we obtain 
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With V0 = 12.0 V, C1= 4.00 µF, C2= 6.00 µF and C3 =3.00 µF, we find Ceq = 2.00 µF and q1 = 
32.0 µC. 
 

(b) The charge on capacitors 2 is 

 

2 1 0 1 (4.00 F)(12.0V) 32.0 F 16.0 Fq CV q µ µ µ= − = − =  

 

(c) The charge on capacitor 3 is the same as that on capacitor 2: 

 

3 1 0 1 (4.00 F)(12.0V) 32.0 F 16.0 Fq CV q µ µ µ= − = − =  

 

24. Let V = 1.00 m
3
. Using Eq. 25-25, the energy stored is 

 

( ) ( )
2

22 12 3 8

0 2

1 1 C
8.85 10 150V m 1.00m 9.96 10 J.

2 2 N m
U u Eε − − 
= = = × = × ⋅ 
V V  

 

27. The total energy is the sum of the energies stored in the individual capacitors. Since they are 

connected in parallel, the potential difference V across the capacitors is the same and the total 

energy is  

 

( ) ( )( )22 6 6

1 2

1 1
2.0 10 F 4.0 10 F 300V 0.27 J.

2 2
U C C V − −= + = × + × =  

 

28. (a) The potential difference across C1 (the same as across C2) is given by 

 

( ) ( )3
1 2

1 2 3

15.0 F 100V
50.0V.

10.0 F+5.00 F+15.0 F

C V
V V

C C C

µ
µ µ µ

= = = =
+ +

 

 

Also, V3 = V – V1 = V – V2 = 100 V – 50.0 V = 50.0 V. Thus, 

 

( ) ( )
( ) ( )

4

1 1 1

4

2 2 2

4 4 4

3 1 2

10.0 F 50.0V 5.00 10 C

5.00 F 50.0V 2.50 10 C

5.00 10 C 2.50 10 C=7.50 10 C.

q CV

q C V

q q q

µ

µ

−

−

− − −

= = = ×

= = = ×

= + = × + × ×

 

 

(b) The potential difference V3 was found in the course of solving for the charges in part (a). Its 

value is V3 = 50.0 V. 

 

(c) The energy stored in C3 is 

 

( ) ( )22 2

3 3 3

1 1
15.0 F 50.0V 1.88 10 J.

2 2
U C V µ −= = = ×  
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(d) From part (a), we have 4

1 5.00 10 Cq −= × , and 

 

(e) V1 = 50.0 V. 

 

(f) The energy stored in C1 is 

 

 ( ) ( )22 2

1 1 1

1 1
10.0 F 50.0V 1.25 10 J.

2 2
U CV µ −= = = ×  

 

(g) Again, from part (a), 4

2 2.50 10 Cq −= × , and  

 

(h) V2 = 50.0 V. 

 

(i) The energy stored in C2 is 

 

( ) ( )22 3

2 2 2

1 1
5.00 F 50.0V 6.25 10 J.

2 2
U C V µ −= = = ×  

 

31. (a) Let q be the charge on the positive plate. Since the capacitance of a parallel-plate 

capacitor is given by 0 i
A dε , the charge is 0 i i

q CV AV dε= = . After the plates are pulled apart, 

their separation is fd and the potential difference is Vf. Then 0 2f f
q AV dε=  and 

 

0

0 0

.
f f f

f i i

i i

d d dA
V q V V

A A d d

ε
ε ε

= = =  

 

With 33.00 10 mid
−= × , 6.00 ViV = and 38.00 10 mfd

−= × , we have 16.0 VfV = . 

 

(b) The initial energy stored in the capacitor is (in SI units) 

 
2 12 4 2

2 110

3

1 (8.85 10 )(8.50 10 )(6.00)
4.51 10  J.

2 2 2(3.00 10 )

i
i i

i

AV
U CV

d

ε − −
−

−

× ×
= = = = ×

×
 

 

(c) The final energy stored is 

 
2

2
20 0 01 1

.
2 2

f f fi
f f i i

f f i i i i

d d dA A AV
U V V U

d d d d d d

ε ε ε   
= = = =   

   
 

 

With / 8.00 / 3.00f id d = , we have 101.20 10  J.fU
−= ×  

 

(d) The work done to pull the plates apart is the difference in the energy:  
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W = Uf – Ui = 
117.52 10  J.−×  

 

34. If the original capacitance is given by C = ε0A/d, then the new capacitance is 0' / 2C A dε κ= . 

Thus C'/C = κ/2 or  
 

κ = 2C'/C = 2(2.6 pF/1.3 pF) = 4.0. 
 

35. The capacitance with the dielectric in place is given by C = κC0, where C0 is the capacitance 
before the dielectric is inserted. The energy stored is given by U CV C V= =1

2

2 1
2 0

2κ , so 

 
6

2 12 2

0

2 2(7.4 10 J)
4.7.

(7.4 10 F)(652V)

U

C V
κ

−

−

×
= = =

×
 

 

According to Table 25-1, you should use Pyrex. 

 

38. Each capacitor has 12.0 V across it, so Eq. 25-1 yields the charge values once we know C1 

and C2.  From Eq. 25-9, 

 

C2 =  
ε0 A
d
  =  2.21 × 10−11 F  , 

 

and from Eq. 25-27, 

 

C1 =  
κε0 A
d
  =  6.64 × 10−11 F  . 

 

This leads to q1 = C1V1 = 8.00 × 10
−10
 C and q2 = C2V2 = 2.66 × 10

−10
 C.  The addition of these 

gives the desired result: qtot = 1.06 × 10
−9
 C.  Alternatively, the circuit could be reduced to find 

the qtot. 

 

39. The capacitance is given by C = κC0 = κε0A/d, where C0 is the capacitance without the 
dielectric, κ is the dielectric constant, A is the plate area, and d is the plate separation. The 
electric field between the plates is given by E = V/d, where V is the potential difference between 

the plates. Thus, d = V/E and C = κε0AE/V. Thus, 
 

A
CV

E
=
κε 0

.  

 

For the area to be a minimum, the electric field must be the greatest it can be without breakdown 

occurring. That is, 

 

A =
× ×

× ×
=

−

−

( .

. ( .
. .

7 0 10

2 8 885 10
0 63

8

12

2F)(4.0 10 V)

F / m)(18 10 V / m)
m

3

6
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43. We assume there is charge q on one plate and charge –q on the other. The electric field in the 

lower half of the region between the plates is 

 

E
q

A
1

1 0

=
κ ε

,  

 

where A is the plate area. The electric field in the upper half is 

 

E
q

A
2

2 0

=
κ ε

.  

 

Let d/2 be the thickness of each dielectric. Since the field is uniform in each region, the potential 

difference between the plates is 

 

V
E d E d qd

A

qd

A
= + = +

L
NM

O
QP
=

+1 2

0 1 2 0

1 2

1 22 2 2

1 1

2ε κ κ ε
κ κ
κ κ

,  

 

so 

 

C
q

V

A

d
= =

+
2 0 1 2

1 2

ε κ κ
κ κ

.  

 

This expression is exactly the same as that for Ceq of two capacitors in series, one with dielectric 

constant κ1 and the other with dielectric constant κ2. Each has plate area A and plate separation 
d/2. Also we note that if κ1 = κ2, the expression reduces to C = κ1ε0A/d, the correct result for a 
parallel-plate capacitor with plate area A, plate separation d, and dielectric constant κ1. 
 

With 4 27.89 10 mA −= × , 34.62 10 md −= × , 1 11.0κ = and 2 12.0κ = , the capacitance is, (in SI units) 

 
12 4

11

3

2(8.85 10 )(7.89 10 ) (11.0)(12.0)
1.73 10 F.

4.62 10 11.0 12.0
C

− −
−

−

× ×
= = ×

× +
 

 

 

 

51.One way to approach this is to note that – since they are identical – the voltage is evenly 

divided between them.  That is, the voltage across each capacitor is V = (10/n) volt.  With C = 

2.0 × 10−6 F, the electric energy stored by each capacitor is 1
2
 CV

2
.  The total energy stored by the 

capacitors is n times that value, and the problem requires the total be equal to 25 × 10−6 J.  Thus, 
 

n

2
 (2.0 × 10−6) 







10
n

2

  =  25 × 10−6 
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leads to n = 4. 

 

52. Initially the capacitors C1, C2, and C3 form a series combination equivalent to a single 

capacitor which we denote C123. Solving the equation 

 
1

 C1
  +  

1

 C2
  +  

1

 C3
  =   

1

 C123
  , 

 

we obtain C123 = 2.40 µF.  With V = 12.0 V, we then obtain q = C123V = 28.8 µC.  In the final 
situation, C2 and C4  are in parallel and are thus effectively equivalent to 24 12.0 FC µ= .  Similar 

to the previous computation, we use   

 
1

 C1
  +  

1

 C24
  +  

1

 C3
  =   

1

 C1234
  

 

and find C1234 = 3.00 µF.  Therefore, the final charge is q = C1234V = 36.0 µC.   
 

(a) This represents a change (relative to the initial charge) of ∆q = 7.20 µC. 
 

(b) The capacitor C24 which we imagined to replace the parallel pair C2 and C4 is in series with C1 

and C3 and thus also has the final charge q =36.0 µC found above.  The voltage across C24 would 
be V24 =  q/C24 =  36.0/12.0 = 3.00 V.  This is the same voltage across each of the parallel pair.  

In particular, V4 = 3.00 V implies that q4 = C4 V4 = 18.0 µC.  
 

(c) The battery supplies charges only to the plates where it is connected. The charges on the rest 

of the plates are due to electron transfers between them, in accord with the new distribution of 

voltages across the capacitors. So, the battery does not directly supply the charge on capacitor 4. 

 

54. We note that the voltage across C3 is V3 = (12 V – 2 V – 5 V ) = 5 V.  Thus, its charge is q3  = 

C3 V3 = 4 µC.  
 

(a) Therefore, since C1, C2 and C3 are in series (so they have the same charge), then 

 

C1 =  
4 µC
2 V

   =  2.0 µF . 

 

(b) Similarly, C2 = 4/5 = 0.80 µF. 
 

55. (a) The number of (conduction) electrons per cubic meter is n = 8.49 × 1028 m3.  The volume 
in question is the face area multiplied by the depth: A·d. The total number of electrons which 

have moved to the face is 

 

        

N =  
−3.0 x 10-6 C
 −1.6 x 10-19 C   ≈ 1.9 × 10

13 
 . 
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Using the relation N = nAd, we obtain d = 1.1 × 10−12 m, a remarkably small distance! 
 

57. (a) Put five such capacitors in series. Then, the equivalent capacitance is 2.0 µF/5 = 0.40 µF. 
With each capacitor taking a 200-V potential difference, the equivalent capacitor can withstand 

1000 V. 

 

(b) As one possibility, you can take three identical arrays of capacitors, each array being a five-

capacitor combination described in part (a) above, and hook up the arrays in parallel. The 

equivalent capacitance is now Ceq = 3(0.40 µF) = 1.2 µF. With each capacitor taking a 200-V 
potential difference the equivalent capacitor can withstand  

1000 V. 

 

62. We do not employ energy conservation since, in reaching equilibrium, some energy is 

dissipated either as heat or radio waves. Charge is conserved; therefore, if Q = C1Vbat = 100 µC, 
and q1, q2 and q3 are the charges on C1, C2 and C3 after the switch is thrown to the right and 

equilibrium is reached, then 

 

Q = q1 + q2 + q3  . 

 

Since the parallel pair C2 and C3 are identical, it is clear that q2 = q3.  They are in parallel with C1 

so that V1=V3, or 

 
q1
C1
 = 
q3
C3
 

 

which leads to q1 =  q3/2.  Therefore, 

 

Q = 






1

2
 q3 + q3 +q3 

 

which yields q3 = 40 µC and consequently q1 = 20 µC. 
 

63. The pair C3 and C4 are in parallel and consequently equivalent to 30 µF.  Since this 
numerical value is identical to that of the others (with which it is in series, with the battery), we 

observe that each has one-third the battery voltage across it.  Hence, 3.0 V is across C4, 

producing a charge 

 

q4  = C4V4  = (15 µF)(3.0 V) = 45 µC  . 
 


