1.(20) When organic compounds are burned in O_2 , they react to form CO_2 and H_2O . The combustion of pentane is shown below.

$$C_5H_{12} + 8O_2 \longrightarrow 5CO_2 + 6H_2O$$

- a) Balance the above reaction.
- b) According to the balanced reaction, how many moles of O_2 are needed to burn 10 mol of C_5H_{12} ?

10 mol C₅H₁₂ x 8 mol O₂/1 mol C₅H₁₂ = 80 mol O₂

c) If 1.4 mol of C_5H_{12} reacts with excess O_2 , how many moles of water will form?

1.4 mol C₅H₁₂ x 6 mol H₂O/1 mol C₅H₁₂ = 8.4 mol H₂O

- d) If I use 8.0 moles of C_5H_{12} and 8.0 moles of O_2 in this reaction, which reactant will have some remaining *unreacted* (which reactant is used in excess)? C_5H_{12} How many moles of this compound will be left over unreacted? Since only 1.0 mole of C_5H_{12} can react with 8.0 moles of O_2 , you will have 7.0 moles of C_5H_{12} left over.
- 2.(20) The following questions refer to the chemical equation below.

- a) Balance the equation.
- b) Assuming excess Cl₂ is available, how many moles iodine pentachloride will form from 2.5 moles of iodine?

2.5 mol $I_2 \times 2$ mol $ICI_5/1$ mol $I_2 = 5.0$ mol ICI_5

c) How many molecules iodine pentachloride is this?

5.0 mol ICl₅ x 6.02 x 10^{23} molecules ICl₅/1 mol ICl₅ = 3.01×10^{24} molecules ICl₅

d) How many moles of chlorine are needed to react with 0.250 moles of iodine?

 $0.250 \text{ mol } I_2 \times 5 \text{ mol } CI_2/1 \text{ mol } I_2 = 1.25 \text{ mol } CI_2$

e) What mass (grams) of Cl₂ is needed to react with 0.250 moles of iodine?

 $0.250 \text{ mol } I_2 \times 5 \text{ mol } Cl_2/1 \text{ mol } I_2 \times 70.90 \text{ g } Cl_2/1 \text{ mol } Cl_2 = 88.6 \text{ g } Cl_2$

3.(20) Balance the following reactions:

- a) $Ca(NO_3)_2 + H_2SO_4 \longrightarrow CaSO_4 + 2 HNO_3$ balance NO₃ groups first
- b) NaHCO₃ + HBr \longrightarrow NaBr + CO₂ + H₂O already balanced :-)
- c) $C_{12}H_{22}O_{11} + H_2O \longrightarrow 4C_2H_6O + 4CO_2$

balance H first on product side with C₂H₆O, then C with CO₂

d) 6 HCl + 2 Al \longrightarrow 2 AlCl₃ + 3 H₂

balance Cl first (3 HCl), then you need 1.5 H_2 -then double everything to have integers as coefficients