Some questions for review of CH 6,7,8

To receive full credit, be sure to show your work. Show the equation you are using and solve for the unknown parameter. Make sure your numerical answers have the proper number of significant figures, have units, and that your units are consistent (e.g. temperature is in Kelvin degrees for all gas law problems). Do not just give the answer.

Helpful equations:
$\Delta G=\Delta H-T \Delta S$
0 degrees $\mathrm{K}=-273^{\circ} \mathrm{C}$
$1.00 \mathrm{~atm}=760 \mathrm{~mm}$ of Hg
Combined gas law: $\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2}$
Ideal gas law: $\mathrm{PV}=\mathrm{nRT} \mathrm{R}=0.0821 \mathrm{~L}^{\prime} \mathrm{atm} / \mathrm{mol}^{\prime} \mathrm{K} ; \mathrm{R}=62.4 \mathrm{~L}^{\circ} \mathrm{mmHg} / \mathrm{mol} \cdot \mathrm{K}$
Standard Temperature and Pressure (STP) $0^{\circ} \mathrm{C}$ and 1 atm
Avogadro's Law: 1 mole of a gas at STP occupies 22.4 L; Avogadro's number 6.02×10^{23}
1.(10) On hot days, you may have noticed that potato chip bags seem to "inflate" even though they have not been opened. If I have a 252 mL bag, and I leave it in my hot car and it expands to a volume of 305 mL at a new temperature of $50^{\circ} \mathrm{C}$, what was the original temperature of the bag (in ${ }^{\circ} \mathrm{C}$)? Assume constant pressure and show your work.
2.(10) Assume you have 38.5 g of O_{2} gas. If the molar mass is $32.0 \mathrm{~g} / \mathrm{mol}$, how many moles of O_{2} are there? What is the volume of this gas in liters at STP?
3.(10) Scuba divers who suffer from decompression sickness are often placed in a hyperbaric chamber that contains a mixture of $21 \% \mathrm{O}_{2}$ and 79% He at 8.2 atm . What is the partial pressure of oxygen in the hyperbaric chamber in atm and in $\mathbf{m m ~ H g}$?
4.(12) The following reaction is at equilibrium and the reactants and products are all gases.

$$
54 \mathrm{kcal} / \mathrm{mol}+\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}
$$

Is this an endothermic or exothermic reaction? \qquad
Explain how the following changes will affect the equilibrium-shifts reaction toward product (P), reactant (R) or no change (N).
a) a catalyst is added
b) the reaction is heated \qquad
c) N_{2} is added \qquad
d) NO_{2} is added \qquad
e) pressure is increased \qquad
5.(24) The combustion reaction of ammonia with oxygen to form nitrogen monoxide and water vapor is shown below:

$$
\mathrm{NH}_{3}+\mathrm{O}_{2} \longrightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}
$$

a) Balance the reaction with coefficients.
b) What are the molecular weights (molar masses) of NH_{3} and $\mathrm{H}_{2} \mathrm{O}$? Express your answers to 3 significant figures.
c) How many moles of O_{2} are needed to react with 0.835 mol of NH_{3} ?
d) How many moles of $\mathrm{H}_{2} \mathrm{O}$ should be produced from 0.835 mol of NH_{3} (assuming excess oxygen)?
e) How many grams of $\mathrm{H}_{\mathbf{2}} \mathrm{O}$ should be formed in this reaction (using your answer from d)?
f) How many molecules of $\mathrm{H}_{2} \mathbf{O}$ should be formed under these conditions?
6.(10) A helium container of the type used to fill balloons has a volume of 180 L and a pressure of 150 atm at $25^{\circ} \mathrm{C}$. How many moles of helium are in the tank? (Assume He is an ideal gas.)
7.(10) The reaction of $\mathrm{H}_{2(\mathrm{~g})}$ with $\mathrm{Cl}_{2(I)}$ to give $\mathrm{HCl}_{(\mathrm{g})}$ has a $\Delta \mathrm{H}=-44.0 \mathrm{kcal} / \mathrm{mol}$ and a $\Delta \mathrm{S}=0.037 \mathrm{kcal} / \mathrm{mol} \cdot \mathrm{K}$.
a) Write the balanced equation for this reaction.
b) Calculate $\Delta \mathrm{G}$ at $-10^{\circ} \mathrm{C}$. Is the reaction spontaneous at this temperature?
c) Is this reaction exothermic or endothermic?

