CHM 161 - Chemistry for the Life Sciences
 Study Guide for Exam III-2012

Worked example = w.e

Chapter 6: Chemical reactions: Mole and Mass Relationships

Figure 6.2 (\mathbf{p}. 167) summarizes conversions between moles and grams

- Mole to mole conversions (using balanced equations) worked example 6.5, problems 6.8, 6.9
- Mole to gram conversions (using molecular weights) w.e. 6.3,6.4,6.6,6.7; problems $6.5,6.10,6.11,6.42,6.44,6.45,6.49$
- Gram to gram conversions (using both); problems 6.64,6.68
g reactant ----> mol reactant ----> mol product ----> g product

Chapter 7: Chemical Reactions: Energy, Rates and Equilibrium

7.3 - Exothermic and Endothermic Reactions ΔH
$\Delta \mathrm{H}$ (enthalpy or heat) is negative (exothermic, heat is a product); $\Delta \mathrm{H}$ is positive (endothermic, heat is a reactant); $\Delta \mathrm{H}$ is measured in $\mathrm{kcal} / \mathrm{mol}$
Problems: Worked examples 7.1 and 7.2, 7.1a-b, 7.2a-b,
7.4 - Free Energy $\Delta \mathrm{G}$ and Entropy $\Delta \mathrm{S}$
ΔG is negative (spontaneous reaction); ΔG is positive (non-spontaneous reaction)
$\Delta \mathbf{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ where $\mathrm{T}=$ temperature (degrees K) and $\mathrm{S}=$ entropy (cal/mol K)
For an ideal reaction to be spontaneous, $\Delta \mathrm{G}$ is negative, $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is positive.
w.e. 7.5, 7.6; Problems: 7.5b,c, 7.6, 7.7, 7.34, 7.42, 7.43,
7.5 - Reactions Rates

Reaction Energy Diagrams; activation energy
w.e. 7.7; Problems: 7.44, 7.45, 7.48
7.6 - Effects of Temperature, Concentration and Catalysts on Reaction Rates

Know the effects of these three parameters on a reaction. What is a catalyst (problem 7.48)?
7.7 - Reversible Reactions and Chemical Equilibrium

Define chemical equilibrium
7.9 - Le Chatelier's Principle

Effect on a reaction at equilibrium of concentration change, temperature change, pressure change (see Table 7.4, p. 203)
w.e. 7.10, Problems: 7.17, 7.62a,c, 7.63a,c, 7.64, 7.65, 7.68, 7.82a,c

Chapter 8: Gases, Liquids and Solids (mostly gases)

8.5 - Boyle's Law: Relation between Volume and Pressure (Temp. held constant)
$\mathbf{P}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} \mathrm{P}$ and V are inversely proportional
w.e. 8.5, Problems: 8.8, 8.9 , 8.48, 8.49, 8.50
8.6 - Charles' Law: Relation between Volume and Temperature (Pressure held constant)
$\mathbf{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{\mathbf{2}} \mathrm{V}$ and T (degrees K) are directly proportional w.e. 8.6, Problems: 8.11, 8.54, 8.55
8.7 - Gay-Lussac's Law: Relation between Pressure and Temperature
$\mathbf{P}_{1} / \mathbf{T}_{1}=\mathbf{P}_{2} / \mathbf{T}_{2} \mathrm{P}$ and T (degrees K) are directly proportional (Volume held constant)
w.e. 8.7, Problems: 8.12, 8.60, 8.61
8.8 - Combined Gas Laws: Relationship between Pressure, Volume and Temperature $\mathbf{P}_{1} \mathbf{V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathbf{V}_{2} / \mathrm{T}_{2}$ If you learn this equation, you will know the previous three equations w.e. 8.8, Problems: 8.13, 8.56, 8.62-64
8.9 - Avogadro's Law: Relation between Volume and Moles $\mathrm{V}_{1} / \mathrm{n}_{1}=\mathrm{V}_{2} / \mathrm{n}_{2} \mathrm{~V}$ and number of moles (n) are directly proportional ($\mathrm{P}=1 \mathrm{~atm}, \mathrm{~T}=273 \mathrm{~K}$) w.e. 8.9, Problems: $8.15,8.71,8.72,8.73$
8.10 - Ideal gas law $\mathbf{P V}=\mathbf{n R T}$ where $\mathbf{R}=0.0821$ when \mathbf{P} is in atm; 62.4 when \mathbf{P} is in mm Hg ; $\mathbf{V}=$ Liters; $\mathbf{n}=$ moles of gas, \mathbf{T} is in degrees K w.e. 8.10, 8.11; also Problems: 8.16, 8.17, 8.78, 8.80, 8.83. 8.84
8.11 - Partial Pressure and Dalton's Law:
$P_{\text {total }}=$ gas $1+P_{\text {gas } 2}+P_{\text {gas } 3}$...
w.e. 8.12 , Problems: $8.19,8.20,8.16,8.88$

