CHM 201 Chapters 7-9 practice

1.(8) Give the stepwise mechanism for the following reaction. Use arrows to indicate the electron flow and show any intermediates.

$$CH_3$$
 $CH_3CHCH=CH_2$
 HBr
 CH_3
 $CH_3CCH_2CH_3$
 HBr

2.(14) An unknown compound (**A**) has a formula of C_7H_8 . Treatment of **A** with H_2 on Lindlar's catalyst gives compound **B** (C_7H_{12}). Treatment of **A** with H_2/Pd on carbon (standard hydrogenation) gives compound **C** (C_7H_{16}). Ozonolysis of **B** followed by a Zn/acetic work-up gives pentanedial and 2 equivalents of formaldehyde.

Propose structures for A, B, and C that are consistent with these data.

3.(14) Propose a sequence of steps that will allow for the transformations.

a)
$$CH_3CH_2C\equiv CH$$
 \longrightarrow CH_3CH_2 CH_2CH_3 \longrightarrow H

4.(36) Draw the major organic structure for the following reactions:

b)
$$C=C$$
 CH_3
 CH_2I_2 , $(CH_3)_3Al$
 CH_2Cl_2 , room temp.

c)
$$\frac{1) \text{ BH}_3\text{-THF}}{2) \text{ H}_2\text{O}_2, \text{ OH}}$$

d)
$$Br_2$$

e)
$$(CH_3)_2CHCH_2C\equiv CH$$
 $HgSO_4$ H_2SO_4, H_2O

g)
$$CH_3CH_2CH_2C \equiv CH$$
 $\frac{1) \text{ NaNH}_2 \text{ in NH}_3 \text{ (l)}}{2) \text{ CH}_3Br}$

h)
$$CH_3CH_2C \equiv CCH_2CH_3$$
 Li metal in NH 3 \rightarrow -78°C

i)
$$\frac{1) \text{ Hg(OAc)}_2 \text{ in THF/water}}{2) \text{ NaBH}_4}$$

5.(12) Determine whether the following pairs of compounds are identical, enantiomers or diastereomers. Also, give the absolute configuration (**R** or **S**) for each chiral center.

a)
$$Br$$
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_3
 CH_3

b)
$$\begin{array}{c} HO \\ HO \\ CH_3 \end{array}$$
 $\begin{array}{c} CH_3 \\ CH_3 \end{array}$ $\begin{array}{c} CH_3 \\ WH_2 \end{array}$

- 6.(12) Compound A shown below has a specific rotation of -44°.
 - a) Identify the absolute configuration (R/S) for each chiral center in A.

$$CH_{3}$$

$$Cl \longrightarrow H$$

$$H \longrightarrow Cl$$

$$Cl \longrightarrow H$$

$$CH_{2}Br$$

A

- b) Above, draw a Fischer projection of the enantiomer of compound **A**. What is its specific rotation?
- c) How many total stereoisomers are there of compound **A**?
- d) Draw two pairs of enantiomers (4 structures) that are stereoisomers of A.

Are there any meso compounds? _____ If so, draw one.