Construct Newman projections for all of the unique rotational conformations of **3,4-dimethylhexane** (focus down C₃-C₄). Identify the lowest (E_{min}) and highest (E_{max}) energy conformations and determine the barrier to rotation in KJ/mol (difference between E_{max} and E_{min}). Use the data provided (Me = methyl; Et = ethyl). How many unique conformations are there?

Interaction	energy cost (K	(J/mol)			
Me-Me gauch	e 38	<u>10, 11101</u>			
Me-Et gauche	4 1				
Et-Et gauche	4 5				
H-H eclipse	4.0				
Me-H eclipse	6.0				
Et-H eclipse	7.0				
Me-Me eclipse	e 11.0				
Me-Et eclinse	12.0				
Et-Et eclinse	13.0				
Et Et tempse	10.0				
$Me \underbrace{Et}_{Et} Me$	Et Me Et Me 25.0	There are 2 p which stereo $Et \rightarrow Me$ 12.4 E = 19.8 KJ/m	Et Et Et Me M 28.0 highest	of conformers (see CH 9). E Et Et Et Me 12.4	depending on Either series is corre Et Me Et Me 25.0 KJ/mol
Me	Et	Et Me	Et Et	Et	Et

Me

Me

12.7

 $\Delta E = 16.7 \text{ KJ/mol}$

Me

Ме

8.3

lowest

Me

25.0

highest

Me

Et

25.0 KJ/mol

highest

Me

Ėt

12.0

Et Me

23.0

Consider the molecule **1,2,4-trimethylcyclohexane** where the methyl groups are all *cis*. The *less stable* conformation has an energy of approximately **26.8 KJ/mol**. Draw the two chair conformations of this compound and determine the energy of the more stable conformation using the data below. How much steric strain (KJ/mol) does a methyl – methyl 1,3-diaxial interaction contribute to the less stable conformation? *Also*, draw a Newman projection of the *more stable* conformation sighting along $C_{1,2}$ and $C_{5,4}$.

