Proof of Inversion of Configuration at a Chiral Center (Phillips and Kenyon)

Rate = $k [AcO^{-}][R-OTs]$

Second order rate kinetics, hence S_N^2

Since the energy of the transition state is significant in determining the rate of the reaction, a primary substrate will react more rapidly than secondary (than a tertiary)

	$R - Br + Cl \stackrel{\Theta}{\longrightarrow} R - Cl + Br \stackrel{\Theta}{\longrightarrow}$				
Rate: ~0	1	500	40,000	2x106	
(CH ₃) ₃ CBr	(CH ₃) ₃ CCH ₂ Br	(CH ₃)CHBr	CH ₃ CH ₂ Br	CH ₃ Br	
30	neopentyl	20	10	methy	