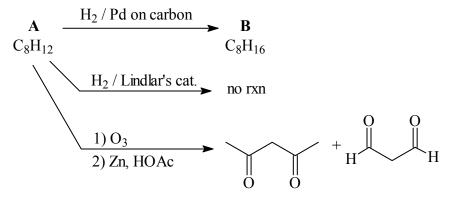
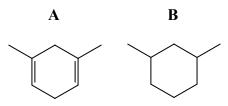

CHM 201 Roadmap Problems

1. An unknown compound (A) has a formula of C_7H_8 . Treatment of A with H_2 on Lindlar's catalyst gives compound B (C_7H_{12}). Treatment of A with H_2/Pd on carbon (standard hydrogenation) gives compound C (C_7H_{16}). Ozonolysis of B followed by a Zn/acetic work-up gives pentanedial and 2 equivalents of formaldehyde.


A (C₇H₈)
$$\xrightarrow{H_2 \text{ on Lindlar's cat.}}$$
 B (C₇H₁₂)
H₂, Pd on C C (C₇H₁₆)
O O O O
2 eq. HCH + HCCH₂CH₂CH₂CH $\xrightarrow{(1) O_3}$
2 D Zn, HOAc

Propose structures for A, B, and C that are consistent with these data.

Compound A has 4 degrees unsaturation reaction with H₂, Lindlar's catalyst results in the reaction w/ 2 mol equivalents of H₂, thus 2 triple bonds reacted


2. An unknown compound (A) has a formula of C_8H_{12} . Treatment of A with H₂/Pdcarbon gives B (C_8H_{16}). Treatment of A with H₂ on a Lindlar catalyst gives no reaction. Ozonolysis of A followed by workup with Zn, HOAc affords 2,4-pentanedione and propanedial shown below.

There are 3 sites of unsaturation in **A**.

a) How many double bonds does A have?
b) How many triple bonds does A have?
c) How many rings does A have?

d) Propose structures for both A and B that are consistent with these data.

