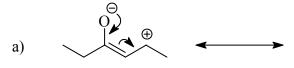
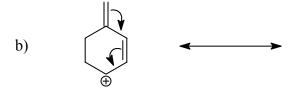
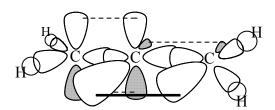
Answer all of the questions in the spaces provided. Point values are in parentheses. Be sure to *read the questions carefully*.


- 1.(15) Propose the best possible **Lewis-dot structures** for the following species. Use lines for covalent bonds, show any **formal charges** where appropriate, and indicate the **hybridization** of each atom other than hydrogen or halogen.
 - a) C₂O₂Cl₂
- b) CHO₂


- c) HNO₂
- 2.(10) For the following reactions identify the acid, base and both conjugate species. Also determine whether or not the reaction proceeds to the right as written. (pKa values *in general*: alcohols 15-18; alkanes 49-55; carboxylic acids 4-6; phosphoric acid 2.)

a)
$$(CH_3)_3CLi + \bigcirc OH$$
 OLi $+ (CH_3)_3CH$

b)
$$COH$$
 + KH_2PO_4 COK + H_3PO_4


3.(10) Draw the resonance structure for each of the species below using the arrows indicating the electron flow.

4.(12) Identify and name all of the functional groups in aspartame (Nutrasweet®) and Effexor® (antidepressant Vanlafaxine) shown below:

5.(12) The molecule shown below is an extremely unusual, unstable and unsaturated hydrocarbon. In the diagram below, identify all orbitals (e.g. p_x , sp^2) and bond types (e.g. π , σ). Additionally, propose a Lewis structure (lines for all bonds) for this hydrocarbon.

6.(15) Using Kekulé structures (zig-zag), draw 7 unique structural isomers with the formula of C_7H_{16} . There are 9 possible isomers

7.(16) Give the names for the following compounds using I.U.P.A.C. nomenclature.

c)
$$CH_2CH_2CH_2CI$$
 $CH_3CHCH_2CH_2CCH_3$ CH_3CHCH_3 CH_3CHCH_3 CI CH_2CH_3

8.(10) Compare **BF**₃ and **BH**₃. Which do you suppose is the stronger Lewis acid. Draw *accurate* depictions of both structures (make sure the bond angles are reasonable) and explain why you feel one is a stronger Lewis acid than the other.

Draw the product of the Lewis acid-base reaction between boron trifluoride and ammonia.

$$BF_3 + NH_3$$