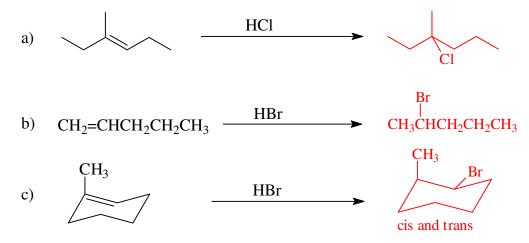

CHM 201 – Organic Chemistry I Hour Exam II 14 October 2002 Name____

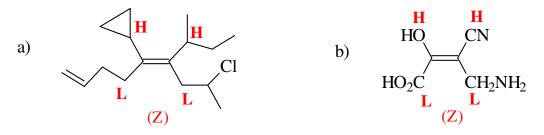
1.(16) Name the following compounds using I.U.P.A.C. nomenclature. Be sure to denote stereochemistry (Z, *trans* etc.) when appropriate.

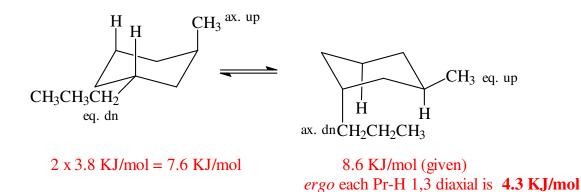
c) Trans 1-bromo-3-methylcyclohexane

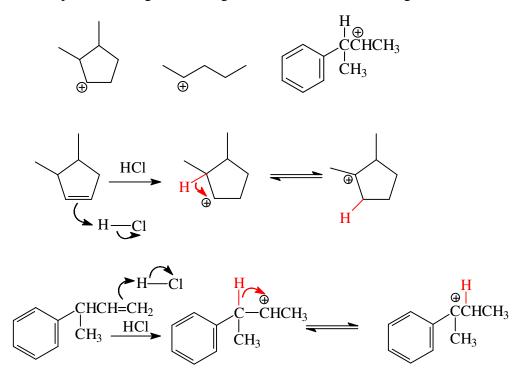
d) (E) 3-(2-methylbutyl)-2-octene


2.(16) Consider the molecule **3-methylpentane** citing along C_2 - C_3 . Construct all six rotational conformers using Newman projections. Also, identify the *highest* and *lowest* energy conformations and determine the energy difference (KJ/mol) between the two. *Please be sure to draw the correct molecule!* The original exam had different values; use these.

Interaction	Energy cost (KJ/mol)
methyl-methyl gauche	3.8
methyl-ethyl gauche	4.2
methyl-H eclipse	6.0
ethyl-H eclipse	6.4
methyl-methyl eclipse	11.0
methyl-ethyl eclipse	12.0
H-H eclipse	4.0

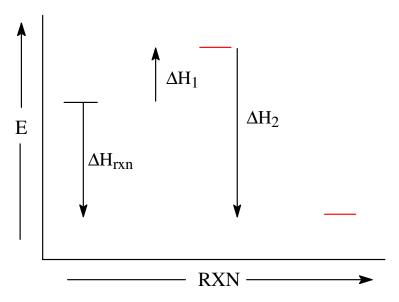

For my structures, I held the front carbon (C-2) still and rotated the rear carbon (C-3) clockwise.


3.(12) Give the major product for the following reactions:


4.(10) Identify the high and low priority substituents and assign (E) or (Z) in the following molecules:

5.(14) The molecule *trans*1-methyl-3-propylcyclohexane can exist in two conformations that have a **difference in energy of only 1.0 KJ/mol**. Draw the two chair conformations of this molecule and **label the alkyl groups** as axial-up, axial-down, equatorial-up, or equatorial-down. If the energy value of a 1,3-diaxial interaction between a methyl group and a hydrogen is 3.8 KJ/mol, what is the value of a 1,3-diaxial interaction between a propyl group and a hydrogen.

6.(10) Carbocations tend to undergo 1,2-hydride shifts or 1,2,-methide shifts in order to achieve greater stability. From the carbocations below, identify the *two* species that you would expect to undergo a rearrangement and draw the rearranged cation below it.



7.(12) Give the structures of the alkenes that would most likely give rise to the above carbocations (question #6) as the major intermediate upon protononation with HCl. See above.

8.(16) Consider the free radical halogenation (X_2) of **methane** with both **fluorine** (F_2) and **bromine** (Br_2). Use the information below and the data table provided to answer the following questions. $CH_4 + X_2 - H_3X + HX$ All values are in KJ/mol

$X_2 \dots > X^{\cdot} + X^{\cdot}$	<u>X= F Br</u>
i) X' + CH ₄	ΔH _i -131 +72
+157 (+193) -456 (-293) ii) CH_3 + X_2 > CH_3X + X	ΔH _{ii} -299 -100
	ΔH _{rxn} -430 -28

- a) Using the two propagation steps shown above (i and ii), calculate ΔH_i and ΔH_{ii} . and ΔH_{rxn} for the reaction with both F_2 and Br_2 (see BDE values on next page).
- b) Are the reactions endo- or exothermic overall? exothermic
- c) Which step is the rate determining step in the **bromination** reaction? Step i) It has a higher Energy of activation
- d) Which reaction is likely *not* a safe reaction to carry out in the lab? Why? Fluorination. The rate determining step is exothermic and the overall ΔH is extremely negative.
- e) On the axes below, construct a reaction profile for the **bromination** propagation steps. Keep your profile roughly to scale. With vertical arrows, **Label** ΔH^{0} for step i, ii, and for the overall reaction. (Connect each step with curved line).

Bond	Bond Dissociation Energy (KJ/mol)
CH ₃ -H	438
CH ₃ -Br	293
CH ₃ -F	456
H-Br	366
H-F	569
Br-Br	193
F-F	157