CHM 201-01 Organic Chemistry I	Name
Hour Exam II	
October 12, 2012	Signature

1.(12) In the following molecules, **rank the groups** in the molecules attached to the chiral centers in order of Cahn, Ingold, Prelog (CIP) priority (1 =highest; 4 =lowest priority) and assign the absolute configuration (*R* or *S*). For full credit, you must rank the groups 1-4.

2.(12) Name the following compounds. Be sure to denote stereochemistry (*cis, trans*) where appropriate.

- 3.(14) Consider the molecule 2(R), 3(S) 2-bromo-3-chlorobutane which has a $[\alpha]_D = -79^\circ$. a) Draw the Fisher projection of this molecule with C₂ above C_{3.} Label it "**A**"
 - b) Draw the stereoisomer that has a $[\alpha]_D = +79^\circ$. Label it "**B**".
 - c) Draw 2 other stereoisomers and label them "C" and "D".
 - d) What is the stereochemical relationship between:
 - А&В _____
 - A&C _____
 - B&D _____
 - C&D _____

4.(18) Draw a staggered *Newman projection* of **2,3-dibromobutane** sighting along C_2 - C_3 where the 2 Br atoms are **anti** and the 2 methyl groups (C1 and C4) are **anti**.

a) Rotate the rear carbon in 60° increments and draw the other 5 conformations. Using the data below determine the relative energy of both conformations and the barrier to rotation (kJ/mol).

Eclipsing	kJ/mol	Gauche	kJ/mol
Н — Н	4.0	$CH_3 - CH_3$	3.8
Br – H	5.0	CH₃ – Br	3.2
CH₃ – H	6.0	Br – Br	2.0
Br – Br	8.0		
CH₃ – Br	10.0		
$CH_3 - CH_3$	11.0		

- b) How many chiral centers are in this compound?
- c) Determine the absolute configuration of any chiral centers.

d) Is this particular molecule optically active? _____ Explain.

- 5.(16) The molecule 3,3-dimethylcyclohexanol is show below and consider the following information:
 - i) $CH_3 H 1,3$ -diaxial interaction = 3.8 kJ/mol
 - ii) OH H 1,3-diaxial interaction = 2.1 kJ/mol
 - iii) OH CH₃ 1,3-diaxial interaction = 8.1 kJ/mol

- a) Above, draw the two flip *chair conformations* and identify any interactions present in each. **Highlight any H's** that are involved in 1,3-diaxial interactions.
- b) Using the data provided, determine the relative energy of each conformation.

6.(14) Determine the absolute configuration (*R* or *S*) for each chiral center in the following pairs of molecules. Also determine if the pairs are *identical, enantiomers or diastereomers*.

7.(12) Identify the following chemical reactions as either *rearrangement*, *elimination*, *substitution* or *addition*. Also identify the electrophile (E) and the nucleophile (N) in each reaction.

8.(4) Briefly define the term "racemic mixture". What is the specific rotation of a racemic mixture?