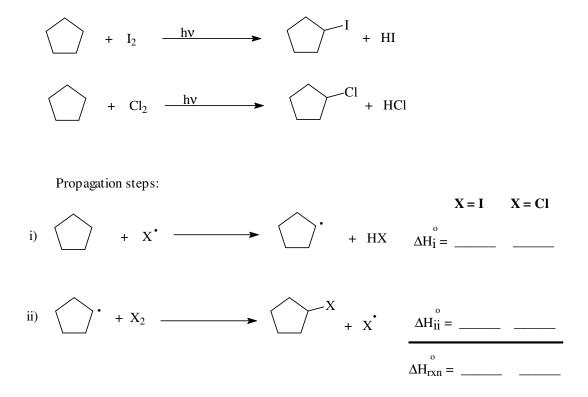
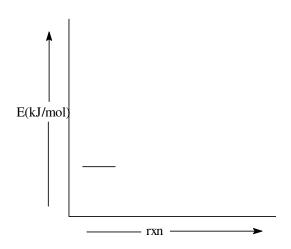

CHM 201-01 Organic Chemistry I Hour Exam III – 104 pts November 9, 2012 Name______Signature

1.(16) Name the following compounds. Be sure to denote stereochemistry where appropriate.

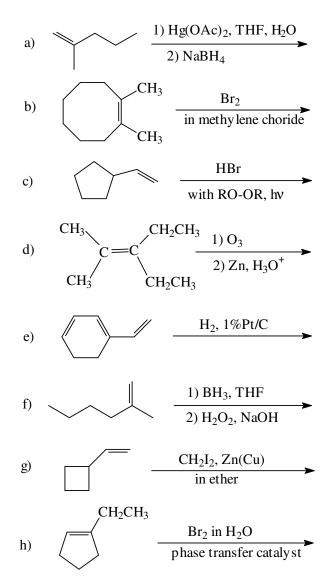
2.(12) The two alkenes **2,3-dimethyl-2-butene** and **3,3-dimethyl-1-butene** afford the *same alkyl bromide* as the major product upon the standard reaction with HBr (no peroxides, no hv; the product has a formula of $C_6H_{13}Br$). Propose a structure for the alkyl halide, and propose *polar* mechanisms that support the formation of this common product. Your mechanisms should show arrows to denote electron flow and show all intermediates.


Which starting alkene is more stable?


3.(6) Determine the number of degrees of unsaturation for the following molecules:

a) C₇H₈Br₂ _____ b) C₂H₅NO₂ _____ c) C₂Cl₄ _____

4.(16) The free radical **iodination** and **chlorination** of cyclopentane are shown below. Using the general mechanism below (where X = I in iodination; X = Cl in chlorination) and the table of bond dissociation energies provided, **determine** ΔH_{ix} ΔH_{ix} **for both reactions** (in kJ/mol).

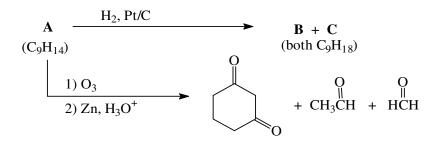


- a) On the axes below, construct a reaction profile for the two propagation steps for the **iodination reaction**. Keep the profile roughly to scale.
- b) With vertical arrows, label ΔH° for step i, ii and the overall rxn.
- c) Is this an *exothermic* or *endothermic* reaction?

Bond	BDE (kJ/mol)
I-I	152
Cl-Cl	242
2° C-H	410
2° C-I	229
2° C-Cl	354
H-I	298
H-Cl	431

5.(32) Give the major products of the following reactions:

6.(10) Draw 5 different zig-zag / polygon structures of C₅H₈ with the following characteristics:


a) no *double* bonds

b) no π bonds (different than a)

c) no rings

d) **two** others of your choice

7.(12) An unknown hydrocarbon **A** has a molecular formula of C_9H_{14} . Upon treatment with H_2 , Pt/C, two stereoisomers, compounds **B** (C_9H_{18}) and **C** (C_9H_{18}) are formed. Ozonolysis of **A** using O₃ followed by Zn and acetic acid gives three compounds: cyclohexane-1,3-dione, acetaldehyde and formaldhyde (shown below). Identify hydrocarbons **A**, **B** and **C**.

