### **CARBOXYLIC ACIDS**

#### Acidity:

- Carboxylic acids are the most acidic simple organic compounds ( $pKa \sim 5$ ).
- But they are only weak acids compared to acids like HCl or H<sub>2</sub>SO<sub>4</sub>. (Remember the lower the pKa, the stronger the acid)
- Resonance stabilisation of the carboxylate ion allows the negative charge to be delocalised between the two electronegative oxygen atoms (compare with alcohols, pKa  $\sim$  16).
- Adjacent <u>electron withdrawing substituents</u> increase the acidity by further stabilising the carboxylate (RCO<sub>2</sub>)

| <b>Carboxylic Acid</b> | Structure                                         | рКа |
|------------------------|---------------------------------------------------|-----|
| Ethanoic acid          | $\mathrm{CH}_3\mathrm{CO}_2\mathrm{H}$            | 4.7 |
| Propanoic acid         | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub> H | 4.9 |
| Fluoroethanoic acid    | CH <sub>2</sub> FCO <sub>2</sub> H                | 2.6 |
| Chloroethanoic acid    | CH <sub>2</sub> ClCO <sub>2</sub> H               | 2.9 |
| Dichloroethanoic acid  | CHCl <sub>2</sub> CO <sub>2</sub> H               | 1.3 |
| Trichloroethanoic acid | CCl <sub>3</sub> CO <sub>2</sub> H                | 0.9 |
| Nitroethanoic acid     | O <sub>2</sub> NCH <sub>2</sub> CO <sub>2</sub> H | 1.7 |



pKa:

# Preparations of Carboxylic Acids

(overview)



# Carboxylation of Grignard Reagents, RMgX, by CO<sub>2</sub> $\mathbf{RMgX} + \overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}}{\overset{\mathcal{O}$

Reaction usually in Et<sub>2</sub>O or THF followed by H<sub>3</sub>O<sup>+</sup> work-up

## Summary

- <u>Grignard reagents</u> react with dry ice (solid CO<sub>2</sub>) followed by aqueous acid workup to give carboxylic acids.
- $\dot{CO}_2$  can be thought of as a being a dicarbonyl compound : O=C=O
- Note that the carboxylic acid contains one extra C atom compared to the original halide from which the Grignard reagent was prepared.

## NUCLEOPHILIC ADDITION OF RMgX TO CARBON DIOXIDE

#### Step 1:

The nucleophilic C in the Grignard reagent adds to the electrophilic C in the polar carbonyl group, electrons from the C=O move to the electronegative O creating an intermediate magnesium carboxylate complex.

#### Step 2:

This is the work-up step, a simple acid/base reaction. Protonation of the carboxylate oxygen creates the carboxylic acid product from the intermediate complex.

# :O=C=Ö: CH<sub>3</sub><sup>-Ŭ</sup>,Ö: CH<sub>3</sub><sup>-Ŭ</sup>,Ö: H<sup>+</sup> CH<sub>3</sub><sup>-Ŭ</sup>,Ö: CH<sub>3</sub><sup>-Ŭ</sup>,ÖH

## Hydrolysis of Nitriles



# **Reaction type : Nucleophilic Substitution** then **Nucleophilic Addition** then **Nucleophilic Acyl Substitution !**

### Summary

- $1^{\circ}$  and  $2^{\circ}$  <u>alkyl halides</u> (X = Cl, Br, I) or <u>tosylates</u> undergo <u>SN2 substitution</u> with cyanide salts to give nitriles.
- Nitriles can be hydrolysed to carboxylic acids without the isolation of the amide intermediate.
- Note that the carbon skeleton is extended by 1 C atom during this reaction sequence.
- Although aromatic nitriles cannot be prepared via the SN2 reaction, they too can be converted to the aromatic carboxylic acid by hydrolysis.