CHM 241 Problem set 4 October 2005

1. Consider the molecule **1,2,3-trimethylcyclohexane** where the methyl groups on C_1 and C_2 are *trans* and groups on C_2 and C_3 are *cis*. Draw the two chair conformations and using the data below (you may not need all of it), determine the relative energies of both and thus the barrier to flipping between the two (in KJ/mol).

Interaction	Energy (KJ/mol)
$\overline{CH_3 - CH_3}$ gauche	3.8
CH ₃ – H 1,3-diaxial	3.8
CH ₃ – CH ₃ 1,3-diaxial	15.4

Construct Newman projections of all six of the unique rotational conformations of 2-methyl-3-ethylpentane citing along C₂-C₃. Using the table below (*you will not need all of the values*), determine the relative energies (KJ/mol) of the highest and lowest energy conformations and the barrier to rotation. Me = methyl; Et = ethyl

Interaction	energy (kJ/mol)
ECLIPSING	
H-H	4.0
H-Me	6.0
H-Et	7.0
Me-Me	15.0
Me-Et	16.0
Et-Et	18.0
GAUCHE	
Me-Me	3.8
Me-Et	4.0
Et-Et	4.5