1. Propose reasonable Lewis-dot structures for the following. There may be more than one correct answer.

 a) \(\text{H}_2\text{CO}_\text{H} \)

 b) \(\text{H}_2\text{NO}_\text{OH} \)

 c) \(\text{O}_\text{O} = \text{N} = \text{O} \)

 d) \(\text{H}_2\text{NO}_\text{H} \)

 e) \(\text{H}_2\text{C}_{\text{sp}^3} = \text{H}_2\text{Cl} \)

 f) \(\text{H}_2\text{C}_{\text{sp}^3} = \text{H}_2\text{H} \)

2. Identify the hybridization of each atom other than H and Cl in the compounds above. See above.

3. \(\text{O} = \text{N} = \text{O} \)

 - 16 e\(^{-}\)
 - localized charge

 \(\text{O} = \text{N} = \text{O} \)

 - 18 e\(^{-}\)
 - delocalized charge

 - two resonance structures describe the molecule

4. Propose a structure of a hydrocarbon with 4 carbons that has 2 sp\(^2\) – sp \(\sigma\) bonds.

 \[\text{H}_2\text{C} = \text{C} = \text{C} \text{CH}_3 \]

5. Draw an orbital depiction of acrylonitrile. Label all bonds (\(\pi\) or \(\sigma\)) and orbitals (e.g. sp\(^3\)).
6. Determine the molecular formula of the following compounds:

a) \(\text{NH}_2 \)

b) \(\text{C}_8\text{H}_{11}\text{N} \)

c) \(\text{C}_8\text{H}_{16} \)

d) \((\text{CH}_3)_2\text{CHCH}_2\text{CH(CH}_3)\text{CH}_2\text{C(CH}_3)_3 \)

\(\text{C}_{13}\text{H}_{24} \)

draw this compound in zig-zag form