1. Propose reasonable Lewis-dot structures for the following. There may be more than one correct answer.
 a) H_2CO_2
 b) HNO_3
 c) N_2O
 d) NH_3O
 e) $\text{C}_2\text{H}_3\text{ClO}$
 f) $\text{C}_2\text{H}_5\text{NO}$

2. Identify the hybridization of each atom other than H and Cl in the compounds above.

3. Draw NO_2^+ and NO_2^-. Which ion has a “localized” charge and which has a “delocalized” charge. Explain (resonance, see Wade 1-9)).

4. Propose a structure of a hydrocarbon with 4 carbons that has 2 $\text{sp}^2 - \text{sp}$ σ bonds.

5. BF$_3$ is non-polar and NF$_3$ is polar despite the fact that the B-F bond has significantly greater bond moment than the N-F bond. Explain (see Wade, 2-9).

6. Draw an orbital depiction of acrylonitrile. Label all bonds (π or σ) and orbitals (e.g. sp^3).

 ![Acrylonitrile](image)

 acrylonitrile

7. Determine the molecular formula of the following compounds:

 a) ![Aromatic Ring](image)
 b) ![Alkenes](image)
 c) ![Cycloalkane](image)
 d) $(\text{CH}_3)_2\text{CHCH}_2\text{CH(Ch}_3\text{)CH}_2\text{C(Ch}_3\text{)}_3$

 draw this compound in zig-zag form