

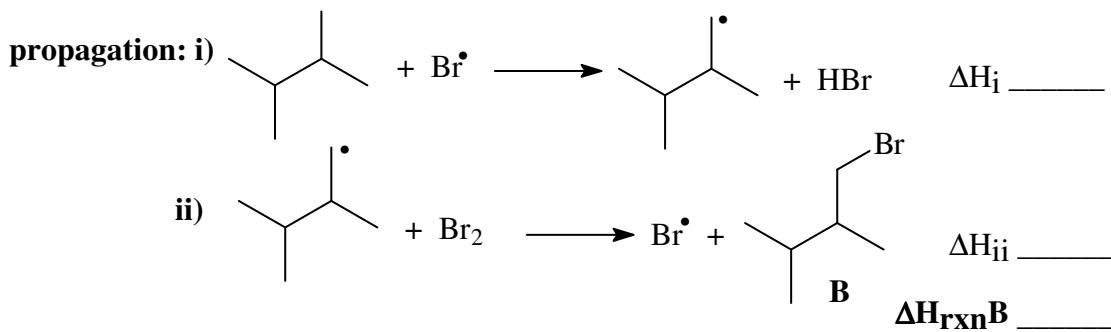
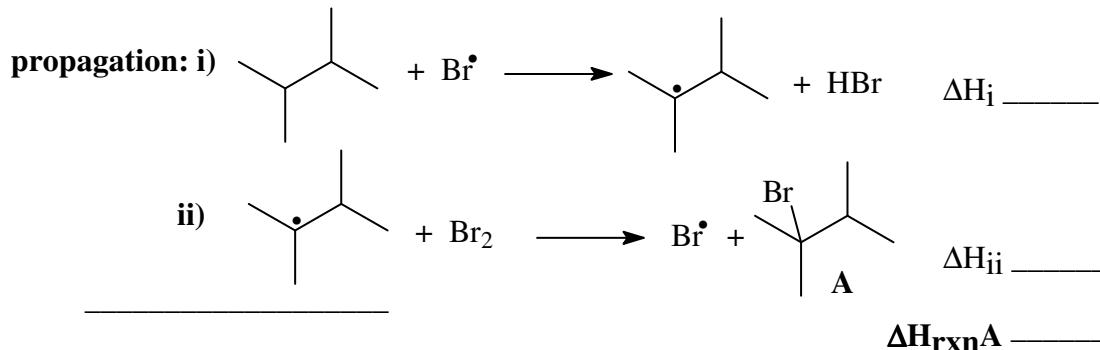
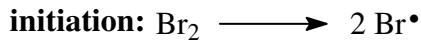
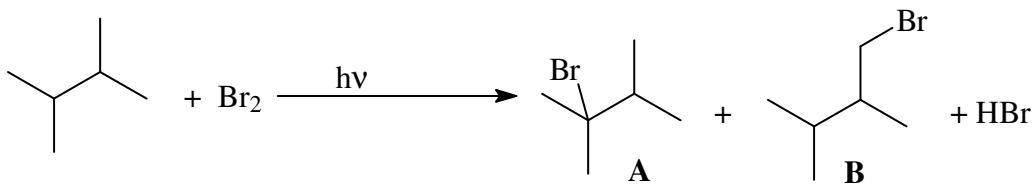
Chapter 10 Problems

1. Consider the free radical bromination of 2,3-dimethylbutane to give the two isomers **A** and **B** shown below. Using the bond dissociation energy data provided, determine ΔH_i , ΔH_{ii} and ΔH_{rxn} for the formation of both **A** and **B**.

For RXN A

$$\Delta H_i = +400 - 366 = +34 \text{ kJ/mol}$$

$$\Delta H_{ii} = +193 - 263 = -70 \text{ kJ/mol}$$

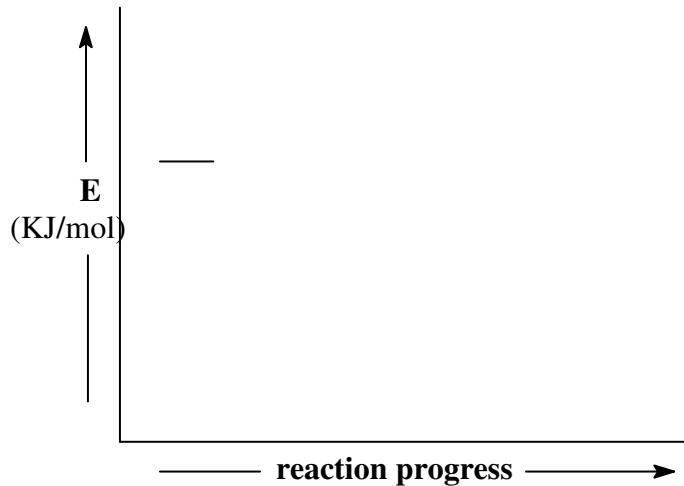




$$\Delta H_{rxn A} = +34 - 70 = -36 \text{ kJ/mol}$$

For RXN B

$$\Delta H_i = +421 - 366 = +55 \text{ kJ/mol}$$

$$\Delta H_{ii} = +193 - 295 = -102 \text{ kJ/mol}$$

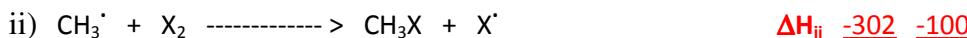
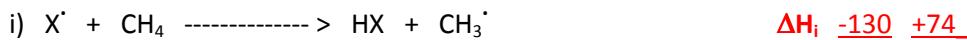
$$\Delta H_{rxn B} = +55 - 102 = -47 \text{ kJ/mol}$$



Which product, **A** or **B**, is more likely to be the major product? Explain.

Product **A** is more likely to form because the rate determining step has a lower ΔH_i therefore has a lower E_{act} . The overall ΔH_{rxn} has virtually no bearing on the product formation.

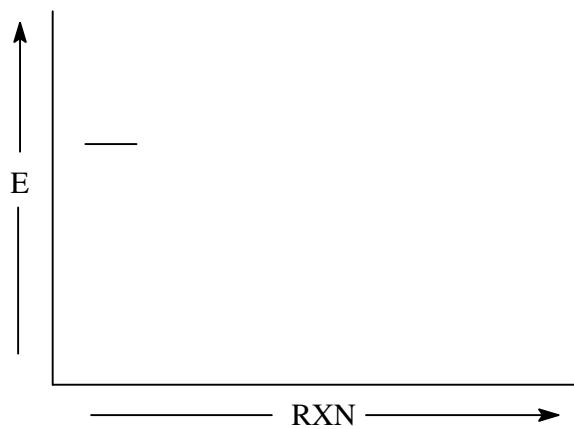
Bond	Bond Dissociation Energy KJ/mol
Br-Br	193
H-Br	366
3° C-H	400
3° C-Br	263
1° C-H	421
1° C-Br	295



2. On the axes below, draw the reaction profile for the 2 propagation steps in question #1 (use the horizontal line for the energy of the reactants) for the reaction that is likely to give the major product. Label with vertical arrows ΔH_i , ΔH_{ii} and ΔH_{rxn} . Try to keep it close to scale. **Should be straight forward.**

3. Consider the free radical halogenation (X_2) of **methane** with both **fluorine (F₂)** and **bromine (Br₂)**. Use the information below and the data table provided to answer the following questions.

$$X = \underline{F} \quad \underline{Br}$$

$$\Delta H_{rxn} \underline{-432 \quad -26}$$


a) Using the two propagation steps shown above (i and ii), calculate ΔH_i and ΔH_{ii} , and ΔH_{rxn} for the reaction with both F₂ and Br₂ (see BDE values on next page).

b) Are the reactions endo- or exothermic overall? exo

c) Which step is the rate determining step in the **bromination** reaction? **Step i**

d) Which reaction is likely *not* a safe reaction to carry out in the lab? Why? **The fluorination is unsafe due to the highly exothermic first step – very small energy of activation with a huge amount of energy liberated.**

e) On the axes below, construct a reaction profile for the **bromination** propagation steps. Keep your profile roughly to scale. With vertical arrows, **Label ΔH° for step i, ii, and for the overall reaction.** **You can do that...**

Bond	Bond Dissociation Energy (KJ/mol)
CH ₃ -H	440
CH ₃ -Br	293
CH ₃ -F	461
H-Br	366
H-F	570
Br-Br	193
F-F	159