Bioinorganic Chemistry of Nickel

 

 

Researchers have become increasing interested in the coordination chemistry of nickel complexes as models for the active sites in nickel containing enzymes1-3.  This is largely due to the discovery of nickel at the centers of many important enzymes4-7.  There are six nickel enzymes discovered so far, they are: urease8, NiFe hydrogenases, methyl coenzyme M reductase9, carbon monoxide dehydrogenase10, acetyl coenzyme A synthase11 and more recently nickel superoxide dismutase (NiSOD)12, 13. Additionally, there are several proteins required for the delivery and assembly of the nickel ions into the active sites of some of these proteins.  For example, the nickel-uptake system in Escherichia coli consists of five proteins, NikABCDE.  Recent spectroscopic studies of NikA suggest that the nickel site is six coordinate and comprised of five oxygen and/or nitrogen donors, and a single sulfur donor14-16.  There are additional E. coli enzymes in which nickel is important such as peptide deformylase and glyoxalase I which catalyze the deformylation of nascent polypeptides, and the isomerization reaction of the hemiacetal to the thioester of d-lactate formed from the reaction of pyruvaldehyde and glutathione respectively17.   Since 1995, the structural biology of nickel proteins has greatly expanded largely due the X-ray structures of urease18, NiFe hydrogenase19, and methyl coenzyme M reductase20.  Many of the enzymatic reactions which occur in these centers are primarily due to the redox activity of the nickel atoms in the enzyme’s active site (Table (in pdf format)).  In fact the proposed mechanisms of NiFe hydrogenase21, methyl-CoM reductase22,23 and NiSOD12, 13 involves reduced (Nio,Ni+) and or oxidized (Ni3+) forms of nickel.  In the case of Methyl-CoM reductase, and NiFe Hydrogenase a Ni(III)-Ni(II)-Ni(I) cycle has been proposed as part of the enzymatic cycle24,25.  It is important to note that in general, the nickel sites in the redox enzymes are dominated by cysteinate ligation whereas the nickel sites in nonredox, hydrolytic enzymes and transport proteins are dominated by O(N)-donor ligands.  Therefore, the trend is for biological redox active nickel centers to be closely associated with sulfur-ligation whereas those with nonredox roles lack Ni-S bonds.   It

is difficult to achieve this Ni(III)-Ni(II)-Ni(I) redox cycle in small molecule chemistry mainly due to the fact that the coordination environments which tend to stabilize Ni+ are much different from those that stabilize Ni3+ 26-28.  Nickel centers with reversible Ni(II)/Ni(I) and Ni(III)/Ni(II) couples and low Ni(III)/Ni(II) potentials are crucial to the activity of these nickel redox enzymes.  The importance of these characteristics has lead to an increased interest in the synthesis of Ni(II) complexes with mixed N/S donors as structural, spectroscopic and redox models of the active sites of these redox enzymes29, 30.

 

(1)        Halcrow, M. A.; Christou, G. Chem. Rev. 1994 94, 2421.

(2)        Stavropoulos, P.; Muetterties, M. C; Carrié, M.; Holm, R. H. J. Am. Chem. Soc. 1991, 113, 8485.

 

(3)         Tucci, G. C.; Holm, R. H. J. Am. Chem. Soc. 1995, 117, 6489.

(4)        Tommasi, I.; Aresta, M.; Giannoccaro, P.; Quaranta, E.; Fragale, C. Inorg. Chim. Acta. 1998, 272, 38.

 

(5)        Cammack, R.;  vanVlient, P. V., In Bioinorganic Catalysis, Reedijk, 

J.; Bouwman, E., Eds., Marcel Dekker, New York, 1999, Chapter 9,  

pgs. 231-233.

 

(6)        Ermler, U.; Grabarse, W.; Shima, S.; Goubeaud, M, Thauer, R. K. 

       Curr. Op. Struct. Biol. 1998, 8, 749.

 

(7)        Dole, F.; Medina, M.; More, C.; Cammack, R.; Bertrand, P.;

       Guigliarelli, B. Biochem. 1996, 35, 16399.

 

(8)        Andrews, R. K.; Blakeley, R. L.; Zerner, B. In The Bioinorganic 

       Chemistry of Nickel, Lancaster, J. R., Ed., VCH Publishers, New 

       York, 1988, Chapter 7 pgs. 141-165.

 

(9)        Telser, J. Struct. Bonding 1998, 91, 31.

(10)   Ralston, C. Y.; Wang, H.; Ragsdale, S. W.; Kumar, M.; Spangler, N  

       .J.; Ludden, P. W.; Gu, W.; Jones, R. M.; Patil, D. S.; Cramer, S. P. 

       J. Am. Chem. Soc. 2000, 122, 10553.

 

(11)   Ragsdale, S. W.; Kumar, M. Chem. Rev. 1998, 96, 2515.

(12)   Youn, H. -D.; Kim, E. -H.; Roe, J. -H.; Kang, S. -O.; Biochem. J. 

       1996, 318, 889.

 

(13)   Choudhury, S. B.; Lee, J. –W.; Davidson, G.; Yim, Y. -I.; Bose, K.;

  Sharma, M. L.; Kang, S. -O.; Cabelli, D. E.; Maroney, M. J. 

 Biochemistry 1999, 38, 3744.

 

(14)   (a) Eitinger, T. Arch. Microbiol. 2000, 173, 1. (b)Allan, C. B.; Wu,

L.-F.; Gu, Z.; Choudhury, S. B.; Al-Mjeni, F.; Sharma, M. L.;   Mandrand-Berthelot, M-A.; Moroney, M. J. Inorg. Chem. 1998, 37, 5952.

 

(15)   de Pina, K.; Navarro, C.; McWalter, L.; Boxer, D. H.; Price, N. C.;

Kelly, S. M.; Mandrand-Berthelot, M.-A.; Wu, L. –F. Eur. J. Biochem. 1995, 227, 857.

 

(16)   Charon, M. –H; Wu, L. –F.; Piras, C.; de Pina, K.; Mandrand-

Berthelot, M.-A.; Fontecilla-Camps, J. C. J. Mol. Biol. 1994, 243, 353.

 

(17)   Davidson, G.; Clugston, S. L.; Honek, J. F.; Maroney, M. J. Inorg.

  Chem. 2000, 39, 2962.

 

(18)   Jabri, E.; Carr, M. B.; Hausinger, R. P.; Karplus, P. A. Science 1995,

  268, 998.

 

(19)   Volbeda, A.; Charon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.;

  Fontecilla-Camps, J. C. Nature 1995, 373, 580.

 

(20)   Ermler, U.; Grabarse, W.; Shima, S.; Goubeaud, M.; Thauer, R. K.

  Science 1997, 278, 1457.

 

(21)   Kaim, W.; Schwederski, B.; Bioinorganic Chemistry: Inorganic

Elements in the Chemistry of Life: An Introduction and Guide, 1991, Wiley, Sussex, Chapter 9, pgs 175-178.

 

(22)   Jaun, B. Helv. Chim. Acta 1990, 73, 2209.

(23)   Berkessel, A. Bioorg. Chem. 1991, 19, 101.

(24)   Cammack, R.; Rao, K. K.; Serra, J.; Llama, M. J. Biochemie 1986,

  68, 93.

 

(25)   Cammack, R. Adv. Inorg. Chem. 1988, 32, 297.

(26)   Sabatini, S.; Fabbrizzi, L. Inorg. Chem. 1979, 18, 438.

(27)   Barefield, E. K.; Freeman, G. M.; Van Derveer, D. G. Inorg. Chem.

  1986, 25, 552.

 

(28)   deVries, N.; Reedijk, J. Inorg. Chem. 1991, 30, 3700.

(29)   Musie, G.; Farmer, P. J.; Tuntulani, T.; Reibenspies, J. H.;

       Darensbourg, M. Y. Inorg. Chem. 1996, 35, 2176.

 

(30)   Goodman, D. C.; Buonomo, R. M.; Farmer, P. J.; Reibenspies, J. H.;

  Darensbourg, M. Y. Inorg. Chem. 1996, 35, 4029.

 

 

Nickel Enzymes (active sites, reactions and

biological distribution)

 

Enzyme

Ni-center

Reaction and Distribution

 

 

 

Urease

 

 

CO(NH2)2 à NH3 + CO2 + HNCO

Bacteria and Plants

 

NiFe Hydrogenase*

 

2H+(aq) + 2e- ¾ H2

Bacteria

 

 

 

Methyl-CoM reductase*

 

 

 

 

Methanogenic

Bacteria

 

 

 

CO dehydrogenase

 

CO + H2O à CO2 + 2H+ + 2e-

 

Photosynthetic Bacteria

 

 

Acetyl CoA synthase

 

CO2 + [CH3]-Co(III)balamin +SCoA +2e- à CH3C(O)ScoA+ Co(I)balamin

 

Methanogenic and Acetogenic Bacteria

Nickel Superoxide Dimutase*

 

2 O2·- + 2H+ à O2 + H2O2

 

Streptomyces