(1.) Methanol (CH$_3$OH) is manufactured by the reaction of carbon monoxide with hydrogen in the presence of a ZnO/Cr$_2$O$_3$ catalyst:

\[
\text{CO(g)} + 2 \text{H}_2(\text{g}) \xrightleftharpoons{\text{ZnO/Cr}_2\text{O}_3}\text{CH}_3\text{OH (g)} \quad \Delta H^\circ = -91 \text{ kJ}
\]

Does the amount of methanol increase, decrease, or remain the same when an equilibrium mixture of reactants and products is subjected to the following changes? (15 pts)

(a) The temperature in increased

(b) The volume is decreased

(c) Helium is added

(d) The catalyst is removed
(2.) Consider the list of acids: (10 pts.)

<table>
<thead>
<tr>
<th>Acid</th>
<th>K_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$COOH</td>
<td>1.8×10^{-5}</td>
</tr>
<tr>
<td>HNO$_2$</td>
<td>5.1×10^{-4}</td>
</tr>
<tr>
<td>CHCl$_2$COOH</td>
<td>5.0×10^{-2}</td>
</tr>
<tr>
<td>HOCl</td>
<td>2.9×10^{-8}</td>
</tr>
</tbody>
</table>

Which acid has the strongest conjugate base? Write the Lewis structure for this base. Write the reaction of this base with water. Would the pH of this conjugate base be greater than or less than 7? What effect causes the third acid to be much stronger than the first acid?
(3.) The solubility of silver chromate, \(\text{Ag}_2\text{CrO}_4 \), is \(7.95 \times 10^{-5} \) M. What is the equilibrium constant (or solubility product) for dissolving silver chromate?

(5 pts)

(4.) What is the pH of a solution prepared from 3.52 g of aniline (a weak base), \(\text{C}_6\text{H}_5\text{NH}_2 \), and 200 mL of water?

(15pts)
(5.) You may have heard of the “ozone hole” in the atmosphere. A mechanism for the destruction of ozone (O_3) is:

$$O_3 \rightarrow O + O_2 \quad \text{slow}$$
$$O_3 + Cl \rightarrow ClO + O_2 \quad \text{fast}$$
$$ClO + O \rightarrow Cl + O_2 \quad \text{fast}$$

Write the balanced equation for this mechanism.

Write the rate law.

What are the intermediates (if any)?

What are the catalysts (if any)?
Which of the following solutions will have the lowest freezing point? Support your answer with a calculation. Assume the volumes of the solutions are the same.

a. 1 m NaCl (aq)
b. 1 m CaBr$_2$ (aq)
c. 1 m Al(NO$_3$)$_3$ (aq)
(7.) Identify the types of intermolecular forces that are present in each of the following substances and select the substance in each pair that has the higher boiling point. (10 pts)

a. C₆H₁₄ or C₈H₁₈

b. C₃H₈ or CH₃OCH₃

c. CH₃OH or CH₃SH

d. NH₂NH₂ or CH₃CH₃

(8.) 0.137 g of an unknown enzyme was dissolved in water to make 125.0 mL of solution. The osmotic pressure was determined to be 5.744 mm Hg at 37°C. What is the molar mass of the enzyme? (10 pts)
Consider the electrochemical cell shown below:

The standard reduction potential, E^0, of Ag^+ to Ag metal is 0.7996 V, and the reduction potential, E^0, of Au^{3+} to Au metal is 1.52 V.

1. Write the half reactions and the balanced equation for the reaction between Au and Ag^+.

2. How many electrons are transferred in this reaction?

3. Is the reaction spontaneous as written?

4. Write the reaction in the direction of spontaneous change (the way it would really go).
Problem 9 cont.

5. Label the anode and cathode and the direction of electron flow.

6. Given that $\Delta G^0 = -nF E^0$, where n is the number of electrons transferred, and F is a constant, 96500, calculate ΔG^0 for the reaction. The units work to give joules.

Do your ΔG^0 value and E^0 values predict the same direction for spontaneous change?
(10.) At elevated temperatures, nitrous oxide decomposes according to the equation:

$$2 \text{N}_2\text{O} (g) \rightarrow 2 \text{N}_2 (g) + \text{O}_2 (g)$$

(a) Use the plots to determine the order, the value of k and the half-life ($t_{1/2}$)

(b) Write the rate law for the reaction

(c) What is the initial concentration of N_2O? \{given the answer to 4 decimal places\}

Please use the reverse side of this page for your answer.
(11.) Formic acid (HCO₂H) is an organic acid secreted by ants. Calculate the pH and the concentrations of all species present (HCO₂H, HCO₂⁻, H₃O⁺, and OH⁻) in 0.20 M HCO₂H. Also calculate the % dissociation. (10 pts)

(12.) Calculate the pH of a solution that contains 0.20 M formic acid and 0.50 M sodium formate. (5 pts)
(13.) Describe the three definitions of acids and bases (with examples) (10 pts)

(a) **Arrhenius** Acids & Bases

(b) **Brønsted-Lowry** Acids & Bases

(c) **Lewis** Acids and Bases
\[\Delta T_f = k_m m \]

\[\Delta T_f = n k_m m \]

\[\Delta T_b = k_b m \]

\[\Delta T_b = n k_b m \]

\[\Pi = RTM \]

\[\Pi = nRTM \]

\[P_{solv} = \chi_{solv} \cdot P_{solv} \]

\[\chi_i = \frac{\text{moles}_i}{\text{total}_\text{moles}} \]

\[\ln[A] - \ln[A]_o = -kt \]

\[t_\frac{1}{2} = \frac{\ln 2}{k} \]

\[\frac{1}{[A]} - \frac{1}{[A]_o} = kt \]

\[\ln k = \ln A - \frac{E_a}{RT} \]

\[\frac{\bar{v}_{D1}}{\bar{v}_{D2}} = \sqrt{\frac{m_2}{m_1}} \]

\[\bar{v}_{RMV} = \sqrt{\frac{3000RT}{mm(g \cdot mol^{-1})}} \text{ or } \sqrt{\frac{3RT}{mm(kg \cdot mol^{-1})}} \]
\[\Delta G^o = -RT \ln K \quad \Delta G^o = -nFE^o \quad \Delta G^o = \Delta H^o - T\Delta S^o \]

\[\text{pH} = -\log[\text{H}_3\text{O}^+] \quad \text{pOH} = -\log[\text{OH}^-] \quad \text{pH} + \text{pOH} = 14 \]

\[\text{pKa} + \text{pKb} = 14 \]

\[[\text{H}_3\text{O}^+][\text{OH}^-] = 1 \times 10^{-14} \]

\[pH = pK_a + \log \left(\frac{[A^-]}{[HA]} \right) \]

<table>
<thead>
<tr>
<th>Acid Dissociation Constants*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Ammonia, NH\textsubscript{3}H+ (aka NH\textsubscript{4}+)</td>
</tr>
<tr>
<td>Aniline, C\textsubscript{6}H\textsubscript{5}NH\textsubscript{2}H+</td>
</tr>
<tr>
<td>Formic acid, HCO\textsubscript{2}H</td>
</tr>
</tbody>
</table>

* Each acid is written in its protonated form. The acidic protons are indicated in bold type.

\[K_f (\text{H}_2\text{O}) = -1.86 \text{ K/molal} \quad K_b (\text{H}_2\text{O}) = 0.512 \text{ K/molal} \]

\[R = 0.0821 \text{ L atm mol}^{-1}\text{K}^{-1} \quad R = 8.314 \text{ J mol}^{-1}\text{K}^{-1} \]