What’s Inorganic Chemistry??

- **Organic chemistry is defined as the chemistry** of hydrocarbon compounds and their derivatives.
- **But how about CO, CO₂, and HCN…for instance?**
- **Inorganic chemistry can be described broadly as the chemistry of “everything else”**
Organic vs. Inorganic

- Involves few elements
- forming mostly covalent or polar covalent bonds
- Mostly molecular solids (except polymers)
- Usually air-stable
- Commonly soluble in nonpolar solvents
- Distillable, crystallizable
- Bonding involves s & p electrons

- All the elements, involving all modes of Bonding
 - Ionic, extended-network (metallic/covalent), & molecular solids
 - All possibilities concerning stability with air or water
 - Widely ranging solubilities

Bonding in Organic and Inorganic
The Weird and Wacky World of Inorganic Chemistry

Of course you can form One, Two, Three and Four Bonds, BUT that is only part of the story…. The most common number of bonds to a transition metal ion is SIX, but that does not mitigate against larger coordination numbers. There are many compounds which contain 7,8,9 bonds to a single atom.

\[\text{[Nd(NO}_3\text{)}_6\text{]}^{3-} \]

Common conceptions of bonding are not enough.

As an example, understanding the bonding in \(\text{B}_2\text{H}_6 \).

HYDROGEN FORM HOW MANY BONDS???
The Elements

- ~ 107 of them
- Most are metals: solids, electrical conductors,
 good thermal conductors, sometimes with
 high mechanical strength and ductility.
- ~ 22 nonmetals (As, Sb, Te, … ?)
- At ambient temp.: 11 gases, 2 liquids (Br,
 Hg), [+ Cs (m.p. 28.5 °C) & Ga (m.p. 29.8 °C)]

Abundances in Earth’s Crust

- Order of occurrence (weight % abundances):
 - O(45.5) > Si(25.7) > Al(8.3) > Fe(6.2) >
 - Ca(4.66) > Mg(2.76) > Na(2.27) > K(1.84)
- All others < 3% combined (including beloved Carbon
 and Hydrogen!)
- SiO₂ and silicates are constituents of most rocks
 and many “ores” of other metallic elements.
- All these elements are the principal constituents of
 most minerals (also important: P, S, Mn, Cr, Ti, Cu).
Cisplatin was approved by the FDA for the treatment of genitourinary tumors in 1978. Since then, Michigan State has collected over $160 million in royalties from cisplatin and a related drug, carboplatin, which was approved by the FDA in 1989 for the treatment of ovarian cancers.

"Testicular cancer went from a disease that normally killed about 80% of the patients, to one which is close to 95% curable. This is probably the most exciting development in the treatment of cancers that we have had in the past 20 years. It is now the treatment of first choice in ovarian, bladder, and osteogenic sarcoma [bone] cancers as well."

—Barnett Rosenberg, who led the research group that discovered cisplatin, commenting on the impact of cisplatin in cancer chemotherapy.
Bioinorganic Chemistry

- Approximately 40 percent of all enzymes have metal ions in their active sites
- The presence of the metal is what governs the reactivity of the enzyme
• **Nitrogenase**

• Catalyzes the “nitrogen” fixation process in plants.

\[
\text{N}_2 + 8\text{H}^+ + 8\text{e}^- + 16 \text{ ATP} \rightarrow 2\text{NH}_3 + \text{H}_2 + 16 \text{ ADP} + 16 \text{ PO}_4^{3-}
\]
Organometallic Chemistry

- catalysis

Sir Geoffrey Wilkinson
Nobel Prize 1973
Kevin Bacon and Inorganic Chemistry
Or something like that

Atomic Structure - Begin with H-atom

In the beginning, comes the Schrödinger Eqn...

\[\mathcal{H} \Psi = E \Psi \]

The Hamiltonian, \(\mathcal{H} \), is an operator with kinetic (T) and potential (V) energy parts

\[\mathcal{H} = T + V \]

\[T = \frac{1}{2m}(p_x^2 + p_y^2 + p_z^2) = -\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \]

\[V = -\frac{Ze^2}{r} \quad \text{in SI units} \]

\(Z \) is the nuclear charge.
Spherical polar coordinates for the atom

The potential energy depends only on r

$$H = T + V = -\frac{\hbar^2}{2m} \nabla^2 - \frac{e^2}{r}$$

where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$

So the differential operators (and, most important, ∇) are expressed in terms of spherical polar coordinates:

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \left(\frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right)$$

Diagram:

- $x = r \sin \theta \cos \phi$
- $y = r \sin \theta \sin \phi$
- $z = r \cos \theta$

$$V = \frac{-(Ze)e}{r}$$
Orbitals

Each ψ_{nlm} in an atom is described by a wave function, or atomic orbital:

$$\psi_{nlm} = R_{nl}(r) \cdot Y_{lm}(\theta \phi)$$

This function is devoid of physical significance, but

$$\psi^2_{n\ell m}(r \theta \phi) \leftrightarrow \text{probability density of } \psi_{n\ell m} \text{ at } (r \theta \phi)$$

$$\int_{all \ space} |\psi^2_{n\ell m}(r \theta \phi)| dr \cdot \int_0^{2\pi} \int_0^\pi Y^*_{lm}(\theta \phi) \sin \theta d\theta d\phi = 1$$

Wave function "normalized" to one; i.e., unit probability that $\psi_{n\ell m}$ is in all space.

Orbitals & Quantum Numbers

- Quantum numbers: n, l, and m_l.
- "principal," "azimuthal," and "magnetic" quantum numbers.
- A set of these 3 defines an orbital.
- Recall that an orbital is a kind of standing wave that is the probability amplitude describing an electron's position. ($|\Psi|^2$ gives the probability density.)
Quantum Numbers

- **n** - principal quantum number
 - influences energy and size of the orbital
 - \(n = 1, 2, 3, \ldots \)
- **l** - azimuthal quantum number
 - shape of orbital (mainly)
 - \(l = 0, 1, 2, \ldots, (n-1) \)
- **\(m_l \)** - magnetic quantum number
 - orientation of orbital (mainly)
 - \(m_l = -l, \ldots, 0, \ldots +l \)

Allowed combinations

<table>
<thead>
<tr>
<th>(n)</th>
<th>(l)</th>
<th>(m_l)</th>
<th># of orbitals</th>
<th>type of orbitals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1s</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2s</td>
</tr>
<tr>
<td>1</td>
<td>-1,0,+1</td>
<td>3</td>
<td>2p</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3s</td>
</tr>
<tr>
<td>1</td>
<td>-1,0,+1</td>
<td>3</td>
<td>3p</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-2,-1, 0,+1,+2</td>
<td>5</td>
<td>3d</td>
<td></td>
</tr>
</tbody>
</table>
The meaning of Ψ

- Orbitals are wavefunctions, defined in mathematical terms.
- Physical interpretation?

 $|\Psi|^2$ tells us the probability of finding the electron at some point in space.

- “Pictures” of orbital shapes (without “signs”) are actually graphs of $|\Psi|^2$.

Some Orbital Wavefunctions

\[
\Psi_{2s} = (2a)^{-3/2} \left(2 - \frac{r}{a}\right) \exp(-r/2a) \sqrt{\frac{1}{4\pi}}
\]

\[
\Psi_{2pz} = \frac{1}{\sqrt{3}} (2a)^{-3/2} \frac{r}{a} \exp(-r/2a) \sqrt{\frac{3}{4\pi}} \cos\theta
\]

\[
\Psi_{2px} = \frac{1}{\sqrt{3}} (2a)^{-3/2} \frac{r}{a} \exp(-r/2a) \sqrt{\frac{3}{4\pi}} \sin\theta \cos\phi
\]

\[
\Psi_{2py} = \frac{1}{\sqrt{3}} (2a)^{-3/2} \frac{r}{a} \exp(-r/2a) \sqrt{\frac{3}{4\pi}} \sin\theta \sin\phi
\]
Representing Orbitals, Ψ & Ψ^2

- Plots for boron 2s
- Probability of finding electron at distance from nucleus

2s orbital - cutaway Ψ^2
2s orbital - 90% enclosure surface

Shapes of p-orbitals Ψ

- 3 p-orbitals for each n-value (2p, 3p, ...)
- All same shape
- Lobes point in perpendicular directions
Shapes of 3d Orbitals

Orbital Filling

- Low energy orbitals fill first.
- Orbital energy increases
 - rapidly as \(n \) increases
 - more slowly as \(l \) increases
From orbitals to atoms - configurations

- Each orbital can “hold” 2 electrons, provided they have opposite spins.
- Build up atoms by filling orbitals with appropriate # of electrons.
- Start at low energy, work toward high energy.
- “Electron configurations”

Screening (or “Shielding”)

- Outer electrons “feel” a fairly small nuclear charge. (Why?)
- Electrons in orbitals with higher l values are screened somewhat more than those in orbitals with low l values.
How Screening Works

Example

Li$^+$ + e$^-$

Effective Nuclear Charge

Distance from Nucleus (a_0)

Distance from nucleus (Å)

Plots for boron 1s, 2s, 2p
Screening - Explain the Data

Ionization Energies (eV)

<table>
<thead>
<tr>
<th>$n = 1$</th>
<th>Hydrogen</th>
<th>He$^+$</th>
<th>He atom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.6</td>
<td>54.4</td>
<td>24.58(1s2)</td>
</tr>
</tbody>
</table>

Excited atoms (electron comes from 2p):

| $n = 2$ | 3.40 | 13.6 | 3.65(1s2p) |

H-atom formula:

$$E = \frac{Z^2(-13.6 \text{ eV})}{n^2}$$

- Z - nuclear charge
- n - principal quantum no.
H atom
(1) $Z = 1$, 1 e-, no screening
Polyelectronic atom, $(y + 1)e-$
(2) $Z_{\text{eff}} = Z - y$, \textit{perfect} screening
(3) $Z_{\text{eff}} = Z - y^*$ $(y^* < y)$, \textit{imperfect} screening

orbital energy order:

1s < 2s < 2p < 3s < 3p

Z = 18, Ar: 1s2 2s2 2p6 3s2 3p6