

Solubility of Salts

- Pbl₂(s) ___Pb²⁺(aq) + 2 l⁻(aq)
- K_{sp} = 7.9 x 10⁻⁹
- But what if we try to dissolve the lead iodide in Pb(NO₃)₂
 (aq) solution ? [Common Ion Effect]
- Solubility Decreases.
- NOW! Let's Dissolve the lead iodide in KNO₃(aq)
- -THE SOLUBILITY INCREASES!

	$l = a lo \sum m \pi^2$	
	$r = 1/2 L m_i z_i^{-1}$	
$I = 0.5[(HCO_3^{-}) \cdot 1^2 + (SO_4^{-}))$ $(M\alpha^{2+}) \cdot 2^2 + (N\alpha^{+}) \cdot 1^2$)·2 ² + (Cl ⁻)·1 ² + (NO ₃ ⁻)· · + (K-)· 1 ² + (Fe ²⁺)·2 ² +	1 ² + (Ca ²⁺)·2 ² + (SiO)·0 ²]
Substituting values for Lake	Superior	
$I = 0.5(0.00082 \cdot 1^{2} + 0.00005 \cdot 2^{2})$ $0.00035 \cdot 2^{2} + 0.00015 \cdot 2^{2}$ $0.000006 \cdot 2^{2} + 0.00007$	$2^{2} + 0.00004 \cdot 1^{2} + 0.0002^{2} + 0.00013 \cdot 1^{2} + 0.00013^{2} \cdot 1^{2} \cdot 1^{2} + 0.00013^{2} \cdot 1^{2} + 0.00013^{2} \cdot 1^{2} + 0.00013^{2} \cdot 1^{2} \cdot$	00008·1 ² + 001·1 ² +
<i>l</i> = 0.0016 — <i>How does this va</i>	alue compare with othe	er natural waters?
Water	Typical Ionic Strength	
Rivers and lakes	0.001 - 0.005	
Potable groundwater	0.001 - 0.02	
Seawater	0.7	
Oil field brines	>5	

• To account for the ionic strength we use activities (A) instead of concentrations...

Concentration can be related to activity using the activity coefficient γ , where

Until now we have assumed that activity, *A*, is equal to concentration, *C*, by setting $\gamma = 1$ when dealing with dilute aqueous solutions...

Effective Hydrated Diameter

 the ion size (α) is the effective hydrated diameter of the ion and it's tightly bound covering of water molecules – electrostatic interactions.

	Ion	-	Ionic strength (μ , M)			
Ion	(α, pm)	0.001	0.005	0.01	0.05	0.1
Charge = ± 1						
H^+	900	0.967	0.933	0.914	0.86	0.83
$(C_6H_5)_2CHCO_2^-, (C_3H_7)_4N^+$	800	0.966	0.931	0.912	0.85	0.82
$(O_2N)_3C_6H_2O^-, (C_3H_7)_3NH^+, CH_3OC_6H_4CO_2^-$	700	0.965	0.930	0.909	0.845	0.81
$\begin{array}{l} Li^{+}, C_{6}H_{5}CO_{2}^{-}, HOC_{6}H_{4}CO_{2}^{-}, ClC_{6}H_{4}CO_{2}^{-}, C_{6}H_{5}CH_{2}CO_{2}^{-}, \\ CH_{2}{=}CHCH_{2}CO_{2}^{-}, (CH_{3})_{2}CHCH_{2}CO_{2}^{-}, (CH_{3}CH_{2})_{4}N^{+}, (C_{3}H_{7})_{2}NH_{2}^{+} \end{array}$	600	0.965	0.929	0.907	0.835	0.80
Cl ₂ CHCO ₂ ⁻ , Cl ₃ CCO ₂ ⁻ , (CH ₃ CH ₂) ₃ NH ⁺ , (C ₃ H ₇)NH ₃ ⁺	500	0.964	0.928	0.904	0.83	0.79
$\begin{array}{l} Na^+, CdCl^+, ClO_2^-, lO_3^-, HCO_3^-, H_2PO_4^-, HSO_3^-, H_2AsO_4^-, \\ Co(NH_4)_4(NO_2)_2^+, CH_2CO_2^-, ClCH_2CO_2^-, (CH_3)_4N^+, \\ (CH_3CH_2)_2NH_2^+, H_2NCH_2CO_2^- \end{array}$	450	0.964	0.928	0.902	0.82	0.775
⁺ H ₃ NCH ₂ CO ₂ H, (CH ₃) ₃ NH ⁺ , CH ₃ CH ₂ NH ₃ ⁺	400	0.964	0.927	0.901	0.815	0.77
$\begin{array}{l} OH^-, F^-, SCN^-, OCN^-, HS^-, CIO_3^-, CIO_4^-, BrO_3^-, IO_4^-, MnO_4^-, \\ HCO_2^-, H_2citrate^-, CH_3NH_3^+, (CH_3)_2NH_2^+ \end{array}$	350	0.964	0.926	0.900	0.81	0.76
K ⁺ , Cl ⁻ , Br ⁻ , I ⁻ , CN ⁻ , NO ₂ ⁻ , NO ₃ ⁻	300	0.964	0.925	0.899	0.805	0.755
$\mathrm{Rb^+},\mathrm{Cs^+},\mathrm{NH_4^+},\mathrm{TI^+},\mathrm{Ag^+}$	250	0.964	0.924	0.898	0.80	0.75

	Ion	Ionic strength (μ , M)					
Ion	(α, pm)	0.001	0.005	0.01	0.05	0.1	
Charge = ± 2							
Mg ²⁺ , Be ²⁺	800	0.872	0.755	0.69	0.52	0.45	
CH ₂ (CH ₂ CH ₂ CO ₂ ⁻) ₂ , (CH ₂ CH ₂ CH ₂ CO ₂ ⁻) ₂	700	0.872	0.755	0.685	0.50	0.425	
$\begin{array}{l} {\rm Ca}^{2+}, {\rm Cu}^{2+}, {\rm Zn}^{2+}, {\rm Sn}^{2+}, {\rm Mn}^{2+}, {\rm Fe}^{2+}, {\rm Ni}^{2+}, {\rm Co}^{2+}, {\rm C_6H_4({\rm CO_2^-})_2}, \\ {\rm H_2C({\rm CH_2{\rm CO_2^-}})_2, ({\rm CH_2{\rm CH_2{\rm CO_2^-}})_2} \end{array}$	600	0.870	0.749	0.675	0.485	0.405	
$\rm Sr^{2+},Ba^{2+},Cd^{2+},Hg^{2+},S^{2-},S_2O_4^{2-},WO_4^{2-},H_2C(CO_2^{-})_2,(CH_2CO_2^{-})_2,(CHOHCO_2^{-})_2$	500	0.868	0.744	0.67	0.465	0.38	
$Pb^{2+}, CO_3^{2-}, SO_3^{2-}, MoO_4^{2-}, Co(NH_3)_5Cl^{2+}, Fe(CN)_5NO^{2-}, C_2O_4^{2-}, Hcitrate^{2-}$	450	0.867	0.742	0.665	0.455	0.37	
$Hg_2^{2+}, SO_4^{2-}, S_2O_3^{2-}, S_2O_6^{2-}, S_2O_8^{2-}, SeO_4^{2-}, CrO_4^{2-}, HPO_4^{2-}$	400	0.867	0.740	0.660	0.445	0.355	
Charge = ± 3							
Al ³⁺ , Fe ³⁺ , Cr ³⁺ , Sc ³⁺ , Y ³⁻ , In ³⁺ , lanthanides ^a	900	0.738	0.54	0.445	0.245	0.18	
citrate ³⁻	500	0.728	0.51	0.405	0.18	0.115	
PO_4^{3-} , $Fe(CN)_6^{3-}$, $Cr(NH)_6^{3+}$, $Co(NH_3)_6^{3+}$, $Co(NH_3)_5H_2O^{3+}$	400	0.725	0.505	0.395	0.16	0.095	
Charge = ± 4							
Th ⁴⁺ , Zr ⁴⁺ , Ce ⁴⁺ , Sn ⁴⁺	1 100	0.588	0.35	0.255	0.10	0.065	
$Fe(CN)_6^{4-}$	500	0.57	0.31	0.20	0.048	0.021	